We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Liquid Biopsy Device Selectively Captures Circulating Tumor Cells

By LabMedica International staff writers
Posted on 12 Aug 2019
Print article
Image: A circulating cancer cell (pink) attaches to carbon nanotube surface; white blood cells (blue) do not adhere and are later washed away (Photo courtesy of Curtis Sayers).
Image: A circulating cancer cell (pink) attaches to carbon nanotube surface; white blood cells (blue) do not adhere and are later washed away (Photo courtesy of Curtis Sayers).
A new type of antigen-independent liquid biopsy captures device exploits the preferential attachment of circulating tumor cells (CTCs) to the surface of carbon nanotubes.

The nanotube-CTC-chip is a novel 76-element microarray that combined carbon nanotube surfaces with microarray batch manufacturing techniques for the capture and isolation of tumor-derived epithelial cells.

Investigators at the Worcester Polytechnic Institute (MA, USA) and several other institutions collaborated to prepare the chips by using materials and batch fabrication techniques similar to those used to make semiconductors. The current generation is configured as a 76-element array of test wells on a glass and silicon wafer. CTCs captured by the carbon nanotube chip remain viable and can be cultured. Furthermore, as the chips are transparent, it is possible to stain and study captured cells without removing them.

By combining lysis of red blood cells (RBC) with the carbon nanotube’s preferential adherence capabilities, the investigators demonstrated the capture and enrichment of CTCs with a five-log reduction of contaminating white blood cells (WBCs). Electron microscopy (EM) studies showed focal adhesion with filaments from the cell body to the nanotube surface.

The nanotube-CTC-chip successfully captured CTCs in the peripheral blood of breast cancer patients (stage 1–4) with a range of four to 238 CTCs per 8.5 millileters blood or 0.5–28 CTCs per milliliter. CTCs (based on CK8/18, Her2, and EGFR biomarkers) were successfully identified in seven out of seven breast cancer patients, and no CTCs were captured from two healthy controls. CTC enumeration based on multiple markers using the nanotube-CTC-chip enabled dynamic views of metastatic progression and could potentially have predictive capabilities for diagnosis and treatment response.

"Isolating CTCs with high purity is a significant challenge, akin to finding a needle in a haystack," said senior author Dr. Balaji Panchapakesan, professor of mechanical engineering at the Worchester Polytechnic Institute. "These cells comprise as few as one to 10 cells among a billion blood cells, and the shedding of CTCs from tumors is a highly discontinuous process."

"These initial clinical studies," said Dr. Panchapakesan, "in which we were able to capture and identify individual CTCs of varying phenotypes, show that this device could become an important tool not only for tracking the progression of cancers and their response to radiation or chemotherapy, but also in making predictions about the likely course of the cancer, which could help physicians identity the most effective course of therapy. This potentially life-saving technology could have multiple beneficial applications. It could help shed light on the complex biological and genetic processes at play in cancer. It could detect cancers at a very early stage by capturing the cells that nascent tumors shed into the blood. It could identify CTCs with metastatic potential before new tumors even begins, and it could help shape treatments customized to each person's cancer."

The nanotube-CTC-chip liquid biopsy device was described in the May 3, 2019, online edition of the journal Lab on a Chip.

Related Links:
Worcester Polytechnic Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.