We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Rare Neurodegenerative Disorders Share DNA Repeat Mutation

By LabMedica International staff writers
Posted on 29 Jul 2019
Print article
Image: Silencing of the FMR1 gene in Fragile X syndrome. FMR1 co-localizes with a rare fragile site, visible here as a gap on the long arms of the X chromosome (Photo courtesy of Wikimedia Commons).
Image: Silencing of the FMR1 gene in Fragile X syndrome. FMR1 co-localizes with a rare fragile site, visible here as a gap on the long arms of the X chromosome (Photo courtesy of Wikimedia Commons).
Genomics researchers have found that at least four rare neurodegenerative diseases result from CGG (cytosine-guanine-guanine) repeat mutations the DNA located in distant, seemingly unrelated areas of the genome.

Noncoding repeat expansions cause various neuromuscular diseases, including myotonic dystrophies, fragile X tremor/ataxia syndrome, some spinocerebellar ataxias, amyotrophic lateral sclerosis, and benign adult familial myoclonic epilepsies.

Inspired by the striking similarities in the clinical and neuroimaging findings between neuronal intranuclear inclusion disease (NIID) and fragile X tremor/ataxia syndrome caused by noncoding CGG repeat expansions in the FMR1 (fragile X mental retardation 1) gene, investigators at the University of Tokyo (Japan) used advanced next-generation genome sequencing and data analysis techniques to search directly for repeat expansion mutations.

Results of the DNA sequencing study identified noncoding CGG repeat expansions in the NBPF19 (Neuroblastoma breakpoint family member 19) gene as the causative mutations for NIID. NIID is a slowly progressive, neurodegenerative disease that may affect any part of the nervous system (central, peripheral, and/or autonomic), as well as various organs. The features of NIID result from the presence of eosinophilic intranuclear inclusions inside neurons and glial cells. Both sporadic and familial cases have been reported. However, specific genes known to cause NIID had not previously been found.

Further prompted by the similarities in the clinical and neuroimaging findings with NIID, the investigators identified similar noncoding CGG repeat expansions in two other diseases: oculopharyngeal myopathy with leukoencephalopathy and oculopharyngodistal myopathy.

"Because the mutations causing the diseases are so similar, in the future, all these patients might benefit from the same treatment," said first author Dr. Hiroyuki Ishiura, an assistant professor at the University of Tokyo Hospital.

The study was published in the July 22, 2019, online edition of the journal Nature Genetics.

Related Links:
University of Tokyo

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.