We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Study Explains Link between Genetic Variation and Vaccine Specificity and Persistence

By LabMedica International staff writers
Posted on 24 Jun 2019
Print article
Image: A micrograph of Neisseria meningitidis in cerebrospinal fluid (CSF) seen by Gram stain at 1000x magnification. Infection could be prevented by vaccination (Photo courtesy of Wikimedia Commons).
Image: A micrograph of Neisseria meningitidis in cerebrospinal fluid (CSF) seen by Gram stain at 1000x magnification. Infection could be prevented by vaccination (Photo courtesy of Wikimedia Commons).
To better explain how genetic variation affects antibody production and specificity following immunization, researchers conducted a GWAS (genome-wide association study) to examine the persistence of immunity following administration of three childhood vaccines.

The efficacy of vaccine-induced immunity depends on the considerable variability in magnitude and persistence of specific antibodies. Maintenance of these specific antibodies is essential for continuity of vaccine-induced serological protection.

Investigators at the University of Oxford (United Kingdom) conducted a genome-wide association study into the persistence of immunity to three childhood vaccines: capsular group C meningococcal (MenC), Haemophilus influenzae type b, and tetanus toxoid (TT) vaccines. Working with genetic data collected from 3,602 children in the United Kingdom and The Netherlands, the investigators analyzed approximately 6.7 million genetic variants affecting single nucleotide polymorphisms (SNPs) associated with vaccine-induced antibody levels.

Following analysis of the results, the investigators published detailed associations between variants in a locus containing a family of signal-regulatory proteins and the persistence of MenC immunity.

"Evoking robust and sustained vaccine-induced immunity from early life is a crucial component of global health initiatives to combat the burden of infectious disease," said first author Dr. Daniel O'Connor, postdoctoral researcher in pediatrics at the University of Oxford. "The mechanisms underlying the persistence of antibody are of major interest, since effectiveness and acceptability of vaccines would be improved if protection were sustained after infant immunization without the need for repeated boosting through childhood."

The vaccine study was published in the June 11, 2019, online edition of the journal Cell Reports.

Related Links:
University of Oxford

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.