We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Sequencing Shows Promise for Diagnosing Prosthetic Joint Infections

By LabMedica International staff writers
Posted on 07 May 2019
Print article
Image: The MinION is the only portable real-time device for DNA and RNA sequencing (Photo courtesy of Oxford Nanopore).
Image: The MinION is the only portable real-time device for DNA and RNA sequencing (Photo courtesy of Oxford Nanopore).
A method is being developed for diagnosing infections associated with prosthetic joint implants that promises to provide results in a matter of hours as opposed to a week or more. The current gold standard is bacterial culture from periprosthetic tissue samples collected during surgery, although another option is culturing from sonicated explanted prostheses in saline.

Of approximately 113,000 total knee replacement surgeries performed in the UK in 2017, 6,500, or about 6%, were revision surgeries, and nearly a quarter of those surgeries took place because of an infection or suspicion of infection. Elbow replacement surgeries showed similar rates of infection-related revision surgeries, while shoulder and hip replacements were around 17%and 16% respectively.

A team of scientists associated with the University of Oxford (Oxford, UK) devised a workflow involved removing a prosthetic device during surgery then placing it in saline and sonicating it to obtain approximately 40 mL of sonication fluid, which is essentially the largest volume they can easily handle in the laboratory, which is allowed them to maximize the number of cells they can extract DNA from. The sonication step potentially increases the number of bacterial cells available in the sample because it disrupts the bacterial biofilm. The DNA is extracted from the sonicated samples, cleaned, and prepared into libraries, which are then sequenced. The work leveraged Oxford Nanopore sequencing technologies.

Teresa Street, PhD, a postdoctoral research student at Nuffield Department of Clinical Medicine (Oxford, UK) and a co-author of the study said, discussed her group's attempts to validate the technology as part of a completely culture-free method for diagnosing prosthetic joint implant infections. She said “That the current gold standard is bacterial culture from periprosthetic tissue samples collected during surgery, although another option is culturing from sonicated explanted prostheses in saline. However, culture from tissue samples is relatively insensitive, with detection rates around 65% and is a very busy process with many steps.”

Their analyses using this improved protocol have a high degree of concordance with culture testing, and in fact they have been able to detect positives for certain species that were culture-negative. In addition, in a few Staphylococcus-positive cases so far they have been able to identify antimicrobial resistance genes. In one sample, they were able to detect two different Staphylococcus organisms, one of which they could identify (S. haemolyticus) and one of which they could not.

They later used MALDI-ToF mass spectrometry to identify this organism as S. caprae, and realized they couldn't initially detect it because it was not in their reference database, underscoring the fact that metagenomic sequencing is only as good as the reference database being used. The study was presented at the European Congress of Clinical Microbiology and Infectious Diseases held April 13-16, 2019, in Amsterdam, The Netherlands.

Related Links:
University of Oxford
Nuffield Department of Clinical Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.