We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Recombinant Capture Molecule Used for Viral Disease Diagnosis

By LabMedica International staff writers
Posted on 17 Apr 2019
Print article
Image: The SPECTROstar Nano Absorbance plate reader with cuvette port (Photo courtesy of BMG Labtech).
Image: The SPECTROstar Nano Absorbance plate reader with cuvette port (Photo courtesy of BMG Labtech).
Crimean-Congo hemorrhagic fever (CCHF) is an infectious disease endemic in a variety of countries in southeastern Europe, the Middle East, Asia, and Africa. The virus (CCHFV) transmission occurs via the bite of an infected tick and also by close contact with body fluids of infected persons or livestock.

The Zika Virus (ZIKV) is an arbovirus that belongs to the Flavivirus genus and infection follows the bite of an infected Aedes mosquito, and it presents with mild flulike disease symptoms; asymptomatic infection is frequent. A ZIKV infection occurring during the first trimester of pregnancy significantly increases the probability for the fetus to develop microcephaly, a severe and disabling malformation of the brain.

An international team of scientists working with the Bernhard Nocht Institute for Tropical Medicine (Hamburg, Germany) have demonstrate the potential of the bacterially expressed extracellular immunoglobulin-like domain of the human FcμR (HsFcμR-Igl) as a capture molecule for IgM-specific serological testing. As model systems, they chose two viral pathogens, the CCHFV and the ZIKV. In 2015, both were identified as high-risk emerging pathogens by the World Health Organization (WHO, Geneva, Switzerland) likely to cause major epidemics and thus needing urgent investigation and development attention.

His-tagged HsFcμR-Igl was expressed in Escherichia coli and purified by affinity chromatography, oxidative refolding, and size-exclusion chromatography. Specific binding of HsFcμR-Igl to IgM/antigen immune complexes (ICs) was confirmed, and two prototypic enzyme-linked immunosorbent assays (ELISAs) for the detection of anti-CCHFV and anti-ZIKV IgM antibodies were developed. Thereby, patient sera and virus-specific recombinant antigens directly labeled with horseradish peroxidase (HRP) were co-incubated on HsFcμR-Igl-coated ELISA plates. Bound ICs were quantified by measuring turnover of a chromogenic HRP substrate. For all ELISAs, the HRP reaction product was quantified by measuring absorbance (A) at 450 nm and 620 nm on a Spectrostar Nano ELISA reader.

Assay validation was performed using paired serum samples from 15 Kosovar patients with a polymerase chain reaction (PCR)-confirmed CCHFV infection and 28 Brazilian patients with a PCR-confirmed ZIKV infection, along with a panel of a priori CCHFV/ZIKV-IgM-negative serum samples. Both ELISAs were highly reproducible. Sensitivity and specificity were comparable with or even exceeded in-house gold standard testing and commercial kits. Furthermore, latex beads coated with HsFcμR-Igl aggregated upon co-incubation with an IgM-positive serum and HRP-labeled antigen but not with either component alone, revealing a potential for use of HsFcμR-Igl as a capture molecule in aggregation-based rapid tests.

The authors concluded that recombinant HsFcμR-Igl is a versatile capture molecule for IgM/antigen ICs of human and animal origin and can be applied for the development of both plate- and bead-based serological tests. The study was published in the February 2019 issue of the journal Clinical Chemistry.

Related Links:
Bernhard Nocht Institute for Tropical Medicine
World Health Organization

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.