We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Targeting MicroRNA Blocks Drug Tolerance in Some Cancers

By LabMedica International staff writers
Posted on 15 Apr 2019
Print article
Image: A diagram of the epidermal growth factor receptor (EGFR) (rainbow colored, N-terminus = blue, C-terminus = red) complexed its ligand epidermal growth factor (magenta) (Photo courtesy of Wikimedia Commons).
Image: A diagram of the epidermal growth factor receptor (EGFR) (rainbow colored, N-terminus = blue, C-terminus = red) complexed its ligand epidermal growth factor (magenta) (Photo courtesy of Wikimedia Commons).
Cancer researchers have suggested that by exploiting the link between a specific microRNA and the tricarboxylic acid energy-producing cycle it may be possible to prevent or reverse the development of drug tolerance or resistance by non-small-cell lung carcinomas.

MicroRNAs (miRNAs) and short interfering RNAs (siRNA) comprise a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. MiRNAs resemble siRNAs of the RNA interference (RNAi) pathway, except miRNAs derive from regions of RNA transcripts that fold back on themselves to form short hairpins, whereas siRNAs derive from longer regions of double-stranded RNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.

Non-small cell lung cancers, which comprise about 85% of lung cancer diagnoses, tend to be less aggressive but harder to treat than small cell lung cancers. About 10% of non-small-cell lung carcinomas carry an epidermal growth factor receptor (EGFR) mutation. Drug tolerance developed by cancer cells is an acute defense response preceding a fully drug-resistant state and tumor relapse; however, there are few therapeutic agents targeting drug tolerance in the clinic.

As part of their effort to identify drugs able to modify drug tolerance, investigators at Beth Israel Deaconess Medical Center (Boston, MA, USA) found that the microRNA miR-147b initiated a reversible state of tolerance to the epidermal growth factor receptor (EGFR) inhibitor osimertinib in non-small-cell lung cancer. Osimertinib is a medication used to treat non-small-cell lung carcinomas with the specific EGFR mutation. It is a third-generation epidermal growth factor receptor tyrosine kinase inhibitor.

The investigators reported in the April 8, 2019, online edition of the journal Nature Metabolism that using miRNA-seq analysis, they determined that miR-147b was the most upregulated microRNA in osimertinib-tolerant and EGFR-mutated lung cancer cells. Whole-transcriptome analysis of single-cell-derived clones revealed a link between osimertinib tolerance and pseudohypoxia responses irrespective of oxygen levels.

Further metabolomics and genetic studies demonstrated that osimertinib tolerance was driven by miR-147b-mediated repression of VHL (von Hippel-Lindau tumor suppressor) and succinate dehydrogenase, which are linked to the tricarboxylic acid energy-producing cycle and pseudohypoxia pathways. Finally, pretreatment with a miR-147b inhibitor delayed osimertinib-associated drug tolerance in patient-derived three-dimensional structures.

"These results were a surprise and represent a total novel finding in the area," said senior author Dr. Frank J. Slack, professor of medical research at Beth Israel Deaconess Medical Center. "In this study, we discovered that a microRNA known as miR-147b is a critical mediator of resistance among a subpopulation of tumor cells that adopt a tolerance strategy to defend against EGFR-based anticancer treatments. We are currently testing the idea of targeting this new pathway as a therapy in clinically relevant mouse models of EGFR-mutant lung cancer."

Related Links:
Beth Israel Deaconess Medical Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.