We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Cellular Barcoding Used to Characterize Clones of Breast Tumor Cells

By LabMedica International staff writers
Posted on 12 Mar 2019
Print article
Image: Cellular barcoding may help to better understand how breast cancer evolves and how treatment strategies can be refined for increased benefits (Photo courtesy of Breast Cancer News).
Image: Cellular barcoding may help to better understand how breast cancer evolves and how treatment strategies can be refined for increased benefits (Photo courtesy of Breast Cancer News).
Cancer researchers used an advanced cellular barcoding technique to characterize cells in primary and disseminated tumors in mouse models of human triple-negative breast cancer.

Triple-negative breast cancer (TNBC) refers to any breast cancer that does not express the genes for estrogen receptor (ER), progesterone receptor (PR), and HER2/neu. Lack of these receptors increases the difficulty of treating the disease, since most hormone therapies target one of the three receptors. Primary triple negative breast cancers are prone to dissemination but sub-clonal relationships between tumors and resulting metastases are poorly understood.

To help clarify this relationship, investigators at the Walter and Eliza Hall Institute of Medical Research (Melbourne, Australia) worked with mouse models carrying two treatment-naïve TNBC patient-derived xenografts (PDXs) in order to track the fate of thousands of barcoded clones in primary tumors, and their metastases.

The investigators sought to capture the majority of tumor biomass and tumor cells at distal sites, and examine their heterogeneity in an unbiased fashion. Distal sites included cells that had shed from the primary tumor and were found in the blood stream as circulating tumor cells (CTCs), or in other distal organs (e.g. lung, bone marrow, ovaries, and kidney) where they accumulated as disseminated tumor cells (DTCs).

To accomplish this task, the investigators utilized cellular barcoding, which allowed robust assessment of clonal diversity and numbers at high resolution and depth, including confident detection of clones as small as five to 10 cells amongst millions.

The investigators reported in the February 15, 2019, online edition of the journal Nature Communications that tumor resection had a major impact on reducing clonal diversity in secondary sites, indicating that most disseminated tumor cells lacked the capacity to "seed", and therefore originated from "shedders" that did not persist. The few clones that continued to grow after resection ("seeders") did not correlate in frequency with their parental clones in primary tumors. Cisplatin treatment of one BRCA1-mutated PDX model had a surprisingly minor impact on clonal diversity in the relapsed tumor yet purged 50% of distal clones. Therefore, clonal features of shedding, seeding, and drug resistance are important factors to consider for the design of therapeutic strategies.

"The barcoding technique," said first author Dr. Delphine Merino, head of the tumor progression and heterogeneity laboratory, at the Olivia Newton-John Cancer Research Institute (Melbourne, Australia), "enabled us to identify the clones that were able to get into the bloodstream and make their way into other organs where they would "seed" new tumor growth. Our study revealed that only a select few clones were actually responsible for the metastasis."

Related Links:
Walter and Eliza Hall Institute of Medical Research
Olivia Newton-John Cancer Research Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.