We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Assay Targets Antibiotic Resistance with Pathogen Identification

By LabMedica International staff writers
Posted on 18 Feb 2019
Print article
Image: Dr. Krishnan Chittur, PhD, chief technology officer and co-founder of GeneCapture, holds the prototype of the rapid infection test cartridge (Photo courtesy of GeneCapture).
Image: Dr. Krishnan Chittur, PhD, chief technology officer and co-founder of GeneCapture, holds the prototype of the rapid infection test cartridge (Photo courtesy of GeneCapture).
A rapid diagnostic device has been developed to detect and identify the source of an infection in less than one hour. The proprietary DNA-based technology has the potential to revolutionize infection control by providing a POC, inexpensive, rapid diagnosis of pathogens in humans, animals and agriculture.

The C-AST assay is being developed in tandem with the CAPTURE pathogen identification assay, which stands for confirm active pathogens through an amplified RNA expression platform. The CAPTURE assay identifies bacterial or fungal pathogens' RNA in liquid samples, including blood, urine, saliva, and other types, with a "universal fluorescent marker," applying the firm's proprietary array using a machine-learning algorithm.

Earlier this month, GeneCapture scientists presented data collected from the functioning prototype system for its collaborators at the University of Alabama (Huntsville, AL, USA). They tested four antibiotics: ampicillin (AMP), amoxicillin/clavulanate (AMC), trimethoprim/sulfamethoxazole (SXT), and ciprofloxacin (CIP), against the nine pathogens responsible for most UTI cases. The group organisms include strains of species like Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus.

The scientists initially evaluated 70 runs comparing 181 drug exposures to no-drug controls. They then evaluated 25 subsequent assays against culture results, focusing on AMP, AMC, SXT, and CIP, with most being tested in duplicate or triplicate. The group did not encounter false resistances or false sensitivities using the drugs. They also emphasized that the C-AST assay performed identically to culture results but in a much shorter period of time. The C-AST assay can test the effectiveness of various antibiotics against pathogens in between 5 and 75 minutes.

Peggy L. Sammon, co-founder and the CEO of GeneCapture, said, “We realized that for most infections, knowing the identity of the organism wasn't enough, so we developed the C-AST assay to give us information about the right drugs to use once CAPTURE has identified an organism. Knowing the type of organism and its concentration allows the C-AST assay to quickly analyze which antibiotics are sensitive or resistant."

Related Links:
University of Alabama

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.