We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




DNA Methylation Pattern May Be Biomarker for Cancer Detection

By LabMedica International staff writers
Posted on 30 Dec 1899
Print article
Image: 5-Methylcytosine is a methylated form of the DNA base cytosine that may be involved in the regulation of gene transcription (Photo courtesy of Wikimedia Commons).
Image: 5-Methylcytosine is a methylated form of the DNA base cytosine that may be involved in the regulation of gene transcription (Photo courtesy of Wikimedia Commons).
A team of Australian researchers has determined that a characteristic pattern of methylated DNA allows for easy detection of the genomes of cancerous cells and may serve as a universal biomarker for rapid diagnosis of many types of cancer.

Methyl groups regulate gene expression and thereby control how a cell functions. Investigators at the University of Queensland (Brisbane, Australia) had reported previously that in healthy cells, methyl groups were spread out across the genome, but the genome of cancer cells were characterized by intense clusters of methyl groups at very specific locations. They named this distribution signature of the methylated DNA the "Methylscape."

The investigators examined the effect of levels and genomic distribution of methylcytosines on the physicochemical properties of DNA to detect the Methylscape biomarker. They found that DNA polymeric behavior was strongly affected by differential patterning of methylcytosine, leading to fundamental differences in DNA solvation and DNA-gold affinity between cancerous and normal genomes. One of the unique properties of the cancer cell Methylscape was its affinity for gold nanoparticles. Binding of DNA to such nanoparticles caused an immediate color change that was visible to the naked eye.

The investigators used electrochemical and colorimetric techniques to develop extremely simple, label-free, and naked eye platforms that could finely detect the Methylscape biomarker from cancer genomes based on the level of gold-DNA adsorption on planar and colloidal gold surfaces respectively. These assays were quick, i.e., analysis time less than 10 minutes, and required minimal sample preparation and small DNA input.

They tested these approaches on a large cohort of over 200 human samples (i.e., genomic DNAs extracted from cell-lines, tissues, and plasma) representing various cancer types. Results published in the December 4, 2018, online edition of the journal Nature Communications revealed that the accuracy of cancer detection was as high as 90%.

"Virtually every piece of cancerous DNA we examined had this highly predictable pattern. It seems to be a general feature for all cancer. It is a startling discovery," said senior author Dr. Matt Trau, professor of chemistry at the University of Queensland. "We certainly do not know yet whether it is the Holy Grail or not for all cancer diagnostics, but it looks really interesting as an incredibly simple universal marker of cancer, and as a very accessible and inexpensive technology that does not require complicated lab based equipment like DNA sequencing."

Related Links:
University of Queensland

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.