We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Recognized Cause of Pediatric Mitochondrial Disease Found

By LabMedica International staff writers
Posted on 26 Nov 2018
Print article
Image: The Leica TCS SP5 Confocal microscope fully covers a broad range of requirements in confocal and multiphoton imaging with excellent overall performance. The system provides the full range of scan speeds at the highest resolution (Photo courtesy of Leica Microsystems).
Image: The Leica TCS SP5 Confocal microscope fully covers a broad range of requirements in confocal and multiphoton imaging with excellent overall performance. The system provides the full range of scan speeds at the highest resolution (Photo courtesy of Leica Microsystems).
Leigh syndrome is a frequent, heterogeneous pediatric presentation of mitochondrial oxidative phosphorylation (OXPHOS) disease, manifesting with psychomotor retardation and necrotizing lesions in brain deep gray matter.

Leigh syndrome has historically had a high mortality rate in childhood or adolescence. Over 90 different genes necessary for mitochondria to function properly are now known to cause it, with disease-causing gene variants rooted in DNA, either within a cell's nucleus or in the separate mitochondrial genome.

A large team of scientists led by those at the Children's Hospital of Philadelphia (Philadelphia, PA, USA) analyzed data from four subjects affected with Leigh syndrome who did not have a specific genetic diagnosis: two brothers and two unrelated patients from Ashkenazi families now living with Leigh syndrome who are followed by the CHOP Mitochondrial Medicine Frontier Program.

The team used various techniques including whole exome sequencing, haplotype and frequency analysis, cell culture and transient transfection, RT-PCR for USMG5 transcript analysis and transcription levels, protein separation and western blotting. Fluorescence microscopy in cells and tissues slides were imaged using a Leica SP5 confocal microscope (Leica Microsystems, Wetzlar, Germany). Respiratory chain enzyme activities assays and high-resolution respirometry were also performed.

The team identified a common causative mutation in the nuclear gene upregulated during skeletal muscle growth protein 5 (USMG5), a gene not previously associated with any human disease. USMG5 encodes a protein component of complex V, the molecular motor within the mitochondrial energy system that directly generates adenosine triphosphate (ATP), each cell's chemical energy currency.

The change in USMG5 is a founder mutation, one that originated by chance, most likely centuries ago in an unidentified individual from an Ashkenazi Jewish population, possibly in Eastern Europe. The mutation causes an autosomal recessive disease, so someone can carry the mutation in one of the pair of USMG5 genes without having disease symptoms. However, if both parents are mutation carriers, each child has a 25% chance of inheriting the mutation on both copies of their gene, and being affected with Leigh syndrome.

Marni J. Falk, MD, an Associate Professor of Pediatrics and senior author of the study, said, “The USMG5 mutation should be added to the list of mutations tested for at the time of prenatal genetic carrier screening in prospective Ashkenazi Jewish parents. The mutation is relatively common in the Ashkenazi population, where roughly one in 175 individuals are carriers. It should also be added to the list of genes to be evaluated in children with Leigh syndrome.” The study was published on October 1, 2018, on the journal Human Molecular Genetics.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.