We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Cancer Detection Device Proves Effective in Field Testing

By LabMedica International staff writers
Posted on 01 Oct 2018
Print article
Image: A lunchbox-sized device for nucleic acid quantification that can be powered by sunlight, a flame or electricity enables the diagnosis of disease in settings with unreliable power supply (Photo courtesy of Cornell University).
Image: A lunchbox-sized device for nucleic acid quantification that can be powered by sunlight, a flame or electricity enables the diagnosis of disease in settings with unreliable power supply (Photo courtesy of Cornell University).
A decentralized approach to diagnostics can decrease the time to treatment of infectious diseases in resource-limited settings, yet most modern diagnostic tools require stable electricity and are not portable.

Kaposi sarcoma (KS) is a cancer that causes patches of abnormal tissue to grow under the skin, in the lining of the mouth, nose, and throat, in lymph nodes, or in other organs. These patches, or lesions, are usually red or purple. They are made of cancer cells, blood vessels, and blood cells.

Bioengineers at Cornell University (Ithaca, NY, USA) and their colleagues have developed a portable device for isothermal nucleic acid quantification that can operate with power from electricity, sunlight or a flame, and that can store heat from intermittent energy sources for operation when electrical power is not available or reliable. The device, the Tiny Isothermal Nucleic acid quantification sYstem (or TINY) has shown promise as a point-of-care detector of Kaposi sarcoma-associated herpesvirus (KSHV) in resource-limited settings such as sub-Saharan Africa.

The team collected biopsy samples from 71 patients in Uganda suspected of having KS and tested the samples with TINY as well as via quantitative polymerase chain reaction (qPCR), the current standard for nucleic acid quantification. Agreement between TINY and qPCR was 94% (67/71), and the team showed that all disagreement stemmed from assay limitations and not TINY capability. The four discordant samples having the lowest concentration of the herpesvirus DNA. Not only can TINY be carried to remote locations for point-of-care use, it could also be valuable in clinics and hospitals where electric power can be unreliable.

Ethel Cesarman, MD, a professor of pathology and laboratory medicine, and a senior author of the study, said, “As a pathologist who knows how difficult it can sometimes be to diagnose KS, it is very exciting to collaborate with engineers that invented a brilliant new device that makes it so easy to support or discard a diagnosis of KS in less than three hours from the time a biopsy is taken.” The study was published on September 11, 2018, in the journal Nature Biomedical Engineering.

Related Links:
Cornell University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.