We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




CRISPR Genome-Editing System Avoids DNA Strand Breaks

By LabMedica International staff writers
Posted on 29 Aug 2018
Print article
Image: A model of the cytidine deaminase enzyme, which is a component of the single-base gene-editing system (Photo courtesy of Wikimedia Commons).
Image: A model of the cytidine deaminase enzyme, which is a component of the single-base gene-editing system (Photo courtesy of Wikimedia Commons).
A variation of the CRISPR/Cas9 genome-editing tool enables more precise manipulation of target genes by not breaking double stranded DNA and instead modifying a single point in the targeted DNA sequence.

CRISPR gene editing has revolutionized biomedicine and biotechnology by providing a simple means to engineer genes through targeted double-strand breaks in the genomic DNA of living cells. However, given the random nature of cellular DNA repair mechanisms and the potential for off-target mutations, technologies capable of introducing targeted changes with increased precision, such as single-base editors, are preferred.

In this regard, a single-base editing system called CRISPR-SKIP was described by investigators at the University of Illinois (Champaign, USA) in the August 15, 2018, online edition of the journal Genome Biology. This method utilized cytidine deaminase single-base editors to program exon skipping by mutating target DNA bases within splice acceptor sites. Thus, CRISPR-SKIP altered a single base before the beginning of an exon, causing the cell to read it as a non-coding portion.

The modified exon was not included in mature RNA, which prevented the corresponding amino acids from becoming part of the protein product. Proteins that are missing a few amino acids often retain partial or full activity, which may be enough to restore function in some genetic diseases.

"Given the problems with traditional gene editing by breaking the DNA, we have to find ways of optimizing tools to accomplish gene modification. This is a good one because we can regulate a gene without breaking genomic DNA," said senior author Dr. Pablo Perez-Pinera, professor of bioengineering at the University of Illinois.

"In Duchenne's muscular dystrophy, for example, just correcting 5% to 10% of the cells is enough to achieve a therapeutic benefit. With CRISPR-SKIP, we have seen modification rates of more than 20% to 30% in many of the cell lines we have studied," said Dr. Perez-Pinera.

Related Links:
University of Illinois

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.