We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Automated System Developed for Human Organoid Production

By LabMedica International staff writers
Posted on 30 May 2018
Print article
Image: Micrograph of a microwell plate containing kidney organoids, generated by liquid handling robots from human stem cells. Red, green, and yellow colors mark distinct segments of the kidney (Photo courtesy of the Freedman Laboratory, University of Washington School of Medicine).
Image: Micrograph of a microwell plate containing kidney organoids, generated by liquid handling robots from human stem cells. Red, green, and yellow colors mark distinct segments of the kidney (Photo courtesy of the Freedman Laboratory, University of Washington School of Medicine).
An automated liquid handling system has been established for the rapid production of human organoids derived from pluripotent stem cells.

Organoids derived from human pluripotent stem cells are a potentially powerful tool for use in cellular research utilizing high-throughput screening (HTS), but the complexity of maintaining organoid cultures has posed a significant challenge for miniaturization and automation.

In order to simplify working with organoids, investigators at the University of Washington School of Medicine (Seattle, USA) developed a fully automated, HTS-compatible platform for enhanced differentiation and phenotyping of human kidney organoids. This system relied on liquid-handling robots to seed pluripotent stem cells onto 384-well microtiter plates. Each microwell eventually generated ten or more organoids. The entire 21-day protocol, from plating to differentiation to analysis, was performed automatically by liquid-handling robots.

The investigators reported in the May 17, 2018, online edition of the journal Cell Stem Cell that high-content imaging analysis revealed both dose-dependent and threshold effects during organoid differentiation. Immunofluorescence and single-cell RNA sequencing identified previously undetected parietal, interstitial, and partially differentiated compartments within organoids and defined conditions that greatly expanded the vascular endothelium.

In an extension of the protocol, the investigators produced genetically engineered organoids carrying mutations that caused polycystic kidney disease, a common, inherited condition that affects one in 600 people worldwide and often leads to kidney failure. Screening these gene-edited organoids in this system revealed an unexpected role for myosin in polycystic kidney disease.

"This is a new "secret weapon" in our fight against disease," said senior author Dr. Benjamin Freedman, assistant professor of medicine at the University of Washington School of Medicine. "Ordinarily, just setting up an experiment of this magnitude would take a researcher all day, while the robot can do it in 20 minutes. On top of that, the robot does not get tired and make mistakes. "There is no question. For repetitive, tedious tasks like this, robots do a better job than humans."

"These findings give us a better idea of the nature of these organoids and provide a baseline from which we can make improvements," said Dr. Freedman. "The value of this high-throughput platform is that we can now alter our procedure at any point, in many different ways, and quickly see which of these changes produces a better result."

Related Links:
University of Washington School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.