We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Cell Block Prep Method Modified for Molecular Studies

By LabMedica International staff writers
Posted on 14 May 2018
Print article
Image: A microscopic appearance of cell blocks prepared by the HistoGel + ethanol (EtOH) method versus HistoGel-only and the EtOH-only methods. The insets in C and F illustrate excellent cytomorphologic preservation with this method (Photo courtesy of Memorial Sloan Kettering Cancer Center).
Image: A microscopic appearance of cell blocks prepared by the HistoGel + ethanol (EtOH) method versus HistoGel-only and the EtOH-only methods. The insets in C and F illustrate excellent cytomorphologic preservation with this method (Photo courtesy of Memorial Sloan Kettering Cancer Center).
Biomarker testing is currently required to guide the selection of a growing number of targeted therapies in patients with a wide range of malignancies. Combined with increasing use of immunostaining for tumor diagnosis, this has substantially increased the demand for the amount of tissue in small specimens.

Recently, next-generation sequencing platforms have entered clinical practice. These platforms afford the ability to consolidate testing of multiple genes and types of alterations into a single platform; however, some next-generation sequencing platforms require substantially larger DNA input than standard molecular methods. For cytology specimens to remain a viable diagnostic modality in the era of personalized medicine, it is crucial for those specimens to consistently provide sufficient material for diagnostic and predictive ancillary studies.

Pathologists from Memorial Sloan Kettering Cancer Center (New York, NY, USA) tested multiple modifications of the cell block preparation protocol to identify a method with the greatest cell capture using split fine-needle aspirations (FNAs) and scrapes from fresh, surgically resected tumors (ex vivo samples). Ex vivo FNAs were prepared using a 25-gauge needle, and scrapes were prepared by gently scraping the cut surface of a tumor with a surgical blade. The team developed an improved HistoGel)-based cell block preparation method. Cellularity yield with the new versus the standard method was assessed in ex vivo split samples and in consecutive clinical fine-needle aspirates processed before and after.

The scientists reported that the key modification in the new method was pretreatment of the pelleted cells with 95% ethanol before the addition of HistoGel (HistoGel + ethanol method). In addition, they optimized the melting conditions of HistoGel and added a dark, inorganic marker to the cell pellets to highlight the desired level of sectioning during microtomy. Cell blocks from ex vivo split samples showed that the HistoGel + ethanol method yielded, on average, an 8.3-fold (range, 1–20) greater cellularity compared with the standard HistoGel-only method. After the switch from the standard HistoGel method to the modified method in their clinical practice, sufficiency of positive fine-needle aspirates for some molecular studies increased from 72% to 97%.

The authors concluded that a modification of the HistoGel-based cell block preparation method that leads to substantial improvement in cell recovery from FNA needle rinses compared with the standard HistoGel method. They showed the validation of this method both in ex vivo split samples and in routine clinical FNAs before and after the implementation of the new method in their laboratory. This protocol is simple and readily adoptable and leads to substantially increased sufficiency of FNA samples for molecular testing. The study was published in the April 2018 issue of the journal Archives of Pathology & Laboratory Medicine.

Related Links:
Memorial Sloan Kettering Cancer Center

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.