We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Tumor Suppressor Gene Variants Identified for Leukemia Patients

By LabMedica International staff writers
Posted on 16 Jan 2018
Print article
Image: Acute lymphoblastic leukemia (Photo courtesy of Pathology Outlines).
Image: Acute lymphoblastic leukemia (Photo courtesy of Pathology Outlines).
Newly identified germline variations in a key tumor suppressor gene predispose individuals to develop leukemia as children and leave them with a 1-in-4 chance of developing a second cancer later. Acute lymphoblastic leukemia is the most common childhood cancer and in most cases, the exact cause is unknown.

Germline Tumor Protein 53 (TP5) variation is the genetic basis of Li-Fraumeni syndrome, a highly penetrant cancer predisposition condition. Recent reports of germline TP53 variants in childhood hypodiploid acute lymphoblastic leukemia (ALL) suggest that this type of leukemia is another manifestation of Li-Fraumeni syndrome.

Scientists at St. Jude Children's Research Hospital (Memphis, TN, USA) and their colleagues performed targeted sequencing of TP53 coding regions was performed on 3,801 children from the Children’s Oncology Group frontline ALL clinical trials. TP53 variant pathogenicity was evaluated according to investigational determined transcriptional activity, in silico prediction of damaging effects, and prevalence in non-ALL control populations. TP53 variants were analyzed for their association with ALL presenting features and treatment outcomes.

The team identified 49 unique nonsilent rare TP53 coding variants in 77 (2.0%) of 3,801 patients sequenced, of which 22 variants were classified as pathogenic. TP53 pathogenic variants were significantly over-represented in ALL compared with non-ALL controls. The high-risk variants were most common in the high-risk leukemia subtype hypodiploid ALL. About 65% of patients who carried high-risk TP53 variant in this study had the hypodiploid subtype of ALL. Children with TP53 pathogenic variants were significantly older with a median age of 15.5 years at ALL diagnosis. Carrying germline TP53 pathogenic variants was associated with inferior event-free survival and overall survival and in particular, children with TP53 pathogenic variants were at a dramatically higher risk of second cancers than those without pathogenic variants, with 5-year cumulative incidence of 25.1% and 0.7%.

The 26 patients in this study who carried the high-risk TP53 variants were also almost four times more likely than other pediatric ALL patients to die of their disease or related complications. Jun J. Yang, PhD, the corresponding author of the study, said, “These germline variations are a double whammy for carriers. Not only is their risk of developing leukemia very high, they are also more likely to relapse or develop a second cancer. Maybe these patients should avoid certain ALL therapies in order to reduce their risk of developing another cancer. I believe this finding may change treatment and follow-up for these high-risk patients. The study was published on January 4, 2018, in the Journal of Clinical Oncology.

Related Links:
St. Jude Children's Research Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.