We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Assay Predicts Cancerous Pancreatic Lesions

By LabMedica International staff writers
Posted on 18 Dec 2017
Print article
Image: The Quantifiler Trio DNA quantification kit (Photo courtesy of Thermo Fisher Scientific).
Image: The Quantifiler Trio DNA quantification kit (Photo courtesy of Thermo Fisher Scientific).
A new simple molecular test has been developed to detect chromosomal abnormalities, biomarkers known as telomere fusions, in pancreatic tumor specimens and pancreatic cyst fluids. This assay may help predict the presence of high-grade or invasive pancreatic cancers requiring surgical intervention.

Telomeres are regions of repetitive nucleotide sequences found at the ends of chromosomes that, under normal circumstances, keep the chromosome intact. When telomeres lose most or all of their telomere repeat sequences, the ends can fuse, leading to cell death or chromosomal instability.

Scientists at Johns Hopkins University School of Medicine (Baltimore, MD, USA) obtained intraductal papillary mucinous neoplasms (IPMN) tissue and cystic fluid from patients undergoing pancreatic resection from 2004 to 2015. Frozen sections of 93 primary resected IPMNs, any adjacent adenocarcinoma, and adjacent normal pancreas tissue were obtained from fresh-frozen tissue blocks created in the surgical pathology suite shortly after the resection specimen was received and mounted onto membrane slides for subsequent laser capture microdissection. Genomic DNA was also isolated from 60 pancreatic cancer xenografts established from primary pancreatic adenocarcinomas resected.

The team grew different cell lines, and performed laser capture microdissection. Whole-genome amplification was conducted for several cell line DNA samples and quantified with Quantifiler. The scientists also designed a nested real-time quantitative polymerase chain reaction (qPCR) assay. Telomere length was determined as the relative ratio of telomere repeat copy number to a single copy gene copy number (T/S ratio) with the use of real-time qPCR with minor modifications. Quantitative PCR was performed by using an Applied Biosystems 7900HT thermocycler.

This telomere fusion assay was able to identify telomere fusions in more than half of the pancreatic cell lines. Telomere fusions were often detected in tumors with high-grade dysplasia (containing more abnormal cells). Telomere fusions were not found in normal pancreas or samples with low-grade dysplasia. Similar findings were seen in analyses of cyst fluid, in which the presence of telomere fusions raised the likelihood of high-grade dysplasia or invasive cancer six fold. The telomere fusion events were found to be associated with high telomerase activity (an enzyme that lengthens telomeres) and shortened telomere length.

Michael Goggins, MD, a professor and senior author of the study, said, “We have developed a simple molecular test to detect telomere fusions. This telomere fusion detection assay is a cheaper method for evaluating pancreatic cyst fluid than many next-generation sequencing approaches that are being evaluated for this purpose.” The study was published on December 8, 2017, in The Journal of Molecular Diagnostics.

Related Links:
Johns Hopkins University School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.