We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Pumps Achieve High-Speed Sorting of Large Cells

By LabMedica International staff writers
Posted on 10 Aug 2017
Print article
Image: The developed microfluidic chip enables sorting of cells at high speed of 16 microseconds. The enlarged view shows a demonstration of on-chip cell sorting of a Euglena gracilis cell (Photo courtesy of Nagoya University).
Image: The developed microfluidic chip enables sorting of cells at high speed of 16 microseconds. The enlarged view shows a demonstration of on-chip cell sorting of a Euglena gracilis cell (Photo courtesy of Nagoya University).
The sorting of individual cells is necessary for many medical applications, including the isolation of specific cell types from cell suspensions. A fluorescence-activated cell sorting (FACS) has been used for high-throughput cell sorting.

A FACS of larger cells requires the samples to be processed under low pressure through wider nozzles to prevent damage and therefor sorting is limited to low-level throughput. Lasers are used to excite auto-fluorescence or tagged-fluorescence of cell included in droplets, and then the droplets are diverted into different containers depending on their characteristics. This technique is a concern owing to sample infections due to aerosols generation.

Scientists at Nagoya University (Nagoya, Japan) investigating cell sorting used a microfluidic chip to prevent sample infection. This chip has microchannels into which cell suspensions are introduced for sorting. The group integrated two externally driven on-chip pumps into the microfluidic chip for high-speed flow control. Using a high-speed actuator as the driving source of pump, they succeeded in producing a flow with 16 microseconds for cell sorting.

Although various methods of on-chip cell sorting have been proposed, high-throughput sorting of large cells remains hampered by the difficulty of controlling high-speed flow over a wide sorting area. To overcome this problem, the team proposed high-speed local-flow control using dual membrane pumps driven by piezoelectric actuators placed on the outside of a microfluidic chip. They evaluated the controllability of shifting the flow profile by the local-flow.

The technique allows them to sort not only large but also small cells with high speed, high purity, and high viability. The method was tested on microalgae as an example of large cells, around 100 µM in size, and achieved 95.8% purity, 90.8% viability, and a 92.8% success rate. As a model small cell type, they used a cancer cell whose size is around 24 µM, and achieved 98.9% purity, 90.7% viability, and a 97.8% success rate.

Shinya Sakuma, PhD, an assistant professor and lead author said, “Microfluidic chip contains a cross-shaped sorting area and three-branched microfluidic channel. Target/non-target cells are three-dimensionally aligned in the main channel. When target cells are detected, the on-chip pumps work rapidly to sort cells into one of two interest channels. Meanwhile, non-target cells are flushed into the waste channel without pump actuation.” The study was first published on June 14, 2017, in the journal Lab Chip.

Related Links:
Nagoya University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.