We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




3D-Printed Heart Valve Models Mimic Physiology

By LabMedica International staff writers
Posted on 17 Jul 2017
Print article
Image: New 3D printing technologies allow researchers to create patient-specific heart valve models that mimic the physiological qualities of the real valves. This image shows the submerged valve during flow testing (Photo courtesy of the Georgia Institute of Technology).
Image: New 3D printing technologies allow researchers to create patient-specific heart valve models that mimic the physiological qualities of the real valves. This image shows the submerged valve during flow testing (Photo courtesy of the Georgia Institute of Technology).
Cardiovascular disease researchers used an advanced multi-material three-dimensional printing technique to create patient-specific heart valve models that mimic the physiological qualities of human valves.

Investigators at the Georgia Institute of Technology (Atlanta, USA) had shown previously that a metamaterial three-dimensional printing technique could be used to create patient-specific phantoms that mimicked the mechanical properties of biological tissue. In the current study, they aimed to use this methodology to develop a procedure simulation platform for in vitro transcatheter aortic valve replacement (TAVR). In addition, they evaluated the feasibility of using these three-dimensional printed mimics to quantitatively predict the occurrence, severity, and location of any degree of post-TAVR paravalvular leaks (PVL).

In conducting this retrospective study involving 18 patients who had undergone TAVR, patient-specific aortic root mimics were created using the three-dimensional printing technique combined with pre-TAVR computed tomography. CoreValve (self-expanding valve) prostheses were deployed in the mimics to simulate the TAVR procedure, from which post-TAVR aortic root strain was quantified in vitro. A novel index, the annular bulge index, was measured to assess the post-TAVR annular strain unevenness in the mimics.

Results published in the July 7, 2017, online edition of the journal JACC: Cardiovascular Imaging revealed that the maximum annular bulge index was significantly different among patient subgroups that had no PVL, trace-to-mild PVL, and moderate-to-severe PVL. Compared with other known PVL predictors, bulge index was the only significant predictor of moderate-severe PVL. Thus, in this proof-of-concept study, the investigators demonstrated the feasibility of using three-dimensional printed tissue-mimics to quantitatively assess post-TAVR aortic root strain in vitro.

"These three-dimensional printed valves have the potential to make a huge impact on patient care going forward," said contributing author Dr. Chuck Zhang, professor of industrial and systems engineering at the Georgia Institute of Technology. "Previous methods of using three-dimensional printers and a single material to create human organ models were limited to the physiological properties of the material used. Our method of creating these models using metamaterial design and multi-material three-dimensional printing takes into account the mechanical behavior of the heart valves, mimicking the natural strain-stiffening behavior of soft tissues that comes from the interaction between elastin and collagen, two proteins found in heart valves."

Related Links:
Georgia Institute of Technology

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.