We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Decellurization Technique Enhances Study of ECM Structure

By LabMedica International staff writers
Posted on 12 Jul 2017
Print article
Image: The in situ decellularization of tissues (ISDoT) process reveals the ECM structure of a decellularized breast cancer lymphatic metastasis (Photo courtesy of Alejandro Mayorca-Guiliani).
Image: The in situ decellularization of tissues (ISDoT) process reveals the ECM structure of a decellularized breast cancer lymphatic metastasis (Photo courtesy of Alejandro Mayorca-Guiliani).
A new method has been developed that allows complete removal of cells from within organs of the body to enhance the study of extracellular membrane (ECM) composition and structure.

ECM is a master regulator of cellular phenotype and behavior. It has a crucial role in both normal tissue homeostasis and disease pathology. Differing mechanical properties in ECM exert effects on both cell behavior and gene expression. ECM can exist in varying degrees of stiffness and elasticity, from soft brain tissues to hard bone tissues. The elasticity of the ECM can differ by several orders of magnitude. This property is primarily dependent on collagen and elastin concentration, and it has recently been shown to play an influential role in regulating numerous cell functions.

Investigators at the University of Copenhagen (Denmark) reported in the June 12, 2017, online edition of the journal Nature Medicine that they had developed a fast and efficient approach to enhance the study of ECM composition and structure. Termed in situ decellularization of tissues (ISDoT), it allows whole organs to be decellularized, leaving native ECM architecture intact. These three-dimensional decellularized tissues can be studied using high-resolution fluorescence and second harmonic imaging, and can be used for quantitative proteomic interrogation of the ECM.

The investigators performed high-resolution sub-micron imaging of matrix topography in normal tissue and over the course of primary tumor development and progression to metastasis in mice. Results of these studies provided the first detailed imaging of the metastatic niche. Furthermore, these data showed that cancer-driven ECM remodeling was organ specific, and that it was accompanied by comprehensive changes in ECM composition and topological structure. The investigators also described differing patterns of basement-membrane organization surrounding different types of blood vessels in healthy and diseased tissues.

The investigators stated that their method was superior to other methods tested in its ability to preserve the structural integrity of the ECM, facilitate high-resolution imaging, and quantitatively detect ECM proteins.

"We have developed a technique to obtain intact organ scaffolds and to image them using microscopes. We are the first to image the structures of primary and metastatic tumors as well as healthy organs in this way," said senior author Dr. Janine Erler, professor in the biotech research and innovation center at the University of Copenhagen. "We are now re-introducing cells into our extracellular matrix scaffolds, bringing them back to life, to study how tumors form and how cancer progresses. This is extremely exciting and offers a unique opportunity to study how cells behave in their native environment."

Related Links:
University of Copenhagen

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.