We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

FISH Method Developed for Analyzing Immune Response

By LabMedica International staff writers
Posted on 30 May 2017
Print article
Researchers have developed a method to analyze hundreds of thousands of cells at once using FISH-Flow for concurrent detection of mRNA and protein markers in single cells using fluorescence in situ hybridization (FISH) and flow cytometry. The new protocol currently evaluates immune responses and could lead to faster and more accurate diagnoses of illnesses, including tuberculosis (TB) and cancers.

Researchers at Rutgers University developed the protocol to evaluate multitudes of cells at once for telltale mRNA species and proteins. The procedure currently provides an opportunity to observe how multiple kinds of immune cells are responding to a foreign substance (e.g. antigen), making it possible to detect the presence of disease earlier.

"This new process allows us to see how individual immune cells are reacting in real time without using artificial reagents that alter what the cells are doing when they respond to a foreign substance," said Maria Laura Gennaro, a professor at Rutgers' Public Health Research Institute (PHRI), who led development of the method with senior colleagues Yuri Bushkin, Richard Pine, and Sanjay Tyagi at PHRI. As the protocol could be used to identify indicators of other illnesses, they plan to study applying it to early diagnosis and treatment of various infectious and non-infectious lung diseases and certain cancers.

"This powerful diagnostic technology exploits a person's own immune system to assess their potential for developing a wide range of acute and chronic diseases – including those caused by infectious agents and those resulting from host dysfunction like cancer, asthma, or autoimmune disorders," said David Perlin, executive director of Rutgers’ PHRI.

The procedure can be particularly useful in finding ways to help identify people who are predisposed to developing TB, making it possible to treat them and help reduce the spread of the disease. Nearly 2 billion people worldwide are afflicted with latent TB, but many never develop full-blown TB. Currently, the only way to determine if latent TB is present is through skin and blood tests for immunological response to TB antigens. However, treatment is not widely offered to people with latent TB due to the prohibitive cost.

"If you can have a method that helps you determine who among the people who are latently affected by TB are predisposed to illness, you can target treatment of latent TB to those people and the risk of spread is reduced," Prof. Gennaro said.

The procedure detailed also includes a semi-automated version developed by Gennaro's research group in collaboration with engineers at San Jose, California-based BD Biosciences that makes the method faster and highly reproducible for clinical applications.

The study, by Arrigucci R et al, was published May 18, 2017, in the journal Nature Protocols.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.