We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Paper-Based Battery Powers Microfluidic Devices

By LabMedica International staff writers
Posted on 22 Mar 2017
Print article
Image: A hydraulic battery pumping fluid through a simple microchannel at a constant rate of 0.6 microliters per minute. Each snapshot is 12 minutes apart (Photo courtesy of the University of North Carolina).
Image: A hydraulic battery pumping fluid through a simple microchannel at a constant rate of 0.6 microliters per minute. Each snapshot is 12 minutes apart (Photo courtesy of the University of North Carolina).
A team of biomedical engineers has developed a novel type of "hydraulic battery" that uses inexpensive, minute paper pumps to power the movement of liquids, including biological fluids, through portable microfluidic diagnostic or analytical devices.

Simple fluid pumps have been developed to improve microfluidic device portability, but they could not be easily programmed, produce repeatable pumping performance, or generate complex flow profiles, which are key requirements for increasing the functionality of portable microfluidic devices.

A novel, improved type of fluid pump was recently described by investigators at North Carolina State University and the University of North Carolina. This detachable, paper-based hydraulic battery could be connected to the outlet of a microfluidic channel to pump fluid at varying flow rates over time, including step changes, ramping flows, and oscillating flows.

"Our system uses pieces of paper that are 125 microns thick, little more than the width of a single hair," said senior author Dr. Glenn Walker, associate professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina. "Capillary action pulls a liquid into the paper, and by changing the shape of the paper, we are able to control how much liquid is pulled through an attached device - and how quickly that happens. By stacking the paper we are able to create more complex flow profiles, depending on the needs for any given application, and any one of these hydraulic battery pumps costs less than a dime. Our hydraulic battery is small, lightweight, very inexpensive, easy to connect to a device, and disposable. In addition, our paper pumps could be saved for later evaluation, such as to run secondary, lab-based tests to confirm on-site diagnoses."

The investigators have filed a patent application to protect the paper pump technology and are currently seeking partners in industry to aid in commercial development.

The hydraulic battery was described in the February 24, 2017, online edition of the journal Technology.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.