We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Rapid Method Determines Free and Total PSA in Serum

By LabMedica International staff writers
Posted on 01 Feb 2017
Print article
Image: The free Prostate-Specific Antigen (PSA) / total PSA fraction is significantly diminished in men with prostate cancer since almost all of the PSA is bound. When the fraction is under 10%, the risk of prostate cancer is high. When it is above 25%, the elevation of PSA is probably related to benign hyperplasia (Photo courtesy of Dianon Pathology).
Image: The free Prostate-Specific Antigen (PSA) / total PSA fraction is significantly diminished in men with prostate cancer since almost all of the PSA is bound. When the fraction is under 10%, the risk of prostate cancer is high. When it is above 25%, the elevation of PSA is probably related to benign hyperplasia (Photo courtesy of Dianon Pathology).
Prostate-Specific Antigen (PSA) is a protein produced by prostate gland cells, circulates through the body in two ways: either bound to other proteins or on its own. PSA traveling alone is called free PSA. The free-PSA test measures the percentage of unbound PSA; the PSA test measures the total of both free and bound PSA.

Prostate cancer can raise PSA levels, but so can other conditions. These include an enlarged prostate, prostatitis, and advancing age. In fact, studies have shown that about 75% of men with an elevated PSA do not have prostate cancer. To determine which men actually have cancer and which do not, physicians traditionally perform a biopsy.

Scientists at the Institute of Nuclear Medicine developed a novel, sensitive and rapid method to simultaneously determine the free and total prostate-specific antigen (fPSA and tPSA) in serum by combining a time-resolved fluoroimmunoassay (TRFIA) and immunomagnetic separation. The new approach uses magnetic particles as an immobilization matrix and means of separation, whereas the luminescent europium (Eu) and samarium (Sm) chelates are used as probes. The proposed method was evaluated via a single-step, sandwich-type TRFIA immunoassay of tPSA and fPSA as model analytes in serum.

The one-step method simultaneously detected fPSA and tPSA in less than 15 minutes with the detection limits of 0.006 ng/mL for fPSA and 0.05 ng/mL for tPSA. The assay ranges for fPSA and tPSA were both 0.5 ng/mL to 100 ng/mL, whereas the average recovery of those two obtained by their original mode were 95.9% and 95.3%, respectively. The present new TRFIA method carrying larger reproducibility, higher recovery, and sensitive specificity was demonstrated to be widely acceptable.

The authors concluded that the simultaneous determination method containing a fast and sensitive approach can be put into an important position to screening large quantities of specimen, and be commonly applied to the clinical determination of fPSA and tPSA in human serum. The study was published on January 19, 2017, in the Journal of Clinical Laboratory Analysis.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.