We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Cancer DNA Biomarkers Detected by Lab-On-A-Chip Technique

By LabMedica International staff writers
Posted on 28 Dec 2016
Print article
Image: A microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules (Photo courtesy of Joshua W. Parks).
Image: A microfluidic chip for sample preparation and an optofluidic chip for optical detection of individual molecules (Photo courtesy of Joshua W. Parks).
Miniaturized lab-on-chip approaches are prime candidates for developing viable diagnostic tests and instruments because they are small, need only limited test volumes, and can be cost-effective.

Cancer is the second leading cause of death in the USA, making early, reliable diagnosis and treatment a priority for doctors. Genomic biomarkers offer great potential for diagnostics and new forms of treatment, such as immunotherapy.

A team of scientists and engineers from the University of California, Santa Cruz (CA, USA) and Brigham Young University (Provo, UT, USA) developed an optofluidic analysis system that processes biomolecular samples starting from whole blood and then analyzes and identifies multiple targets on a silicon-based molecular detection platform. Instead of transferring relatively large (micro- to milliliters) samples between test tubes or using bulky analytical equipment, samples and reagents are handled on chip-scale devices with fluidic microchannels. This requires much smaller test volumes, and multiple functions can be integrated on a single device, improving speed, reliability and portability of these laboratory processes.

The scientists demonstrated blood filtration, sample extraction, target enrichment, and fluorescent labeling using programmable microfluidic circuits. They detected and identified multiple targets using a spectral multiplexing technique based on wavelength-dependent multi-spot excitation on an antiresonant reflecting optical waveguide chip. Specifically, they extracted two types of melanoma biomarkers, mutated cell-free nucleic acids, BRAFV600E and NRAS, from whole blood. They detected and identified these two targets simultaneously using the spectral multiplexing approach with up to a 96% success rate.

Holger Schmidt, PhD, a professor of electrical engineering and senior author of the study, said, “Our approach uses optofluidic chips where both fluid processing and optical sensing are done on a chip, allowing for further miniaturization and performance enhancements of the chip system. In the near term, we hope to build new diagnostic instruments for molecular diagnostics with applications in oncology and infectious disease detection, both viruses and (drug-resistant) bacteria.” The study was published in the December 2016 issue of the journal Biomicrofluidics.

Related Links:
University of California, Santa Cruz
Brigham Young University
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: AI analysis of DNA fragmentomes and protein biomarkers noninvasively detects ovarian cancer (Photo courtesy of Adobe Stock)

Blood-Based Machine Learning Assay Noninvasively Detects Ovarian Cancer

Ovarian cancer is one of the most common causes of cancer deaths among women and has a five-year survival rate of around 50%. The disease is particularly lethal because it often doesn't cause symptoms... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Pathology

view channel
Image: The device can serve as a sample pretreatment tool for cytological diagnosis of malignant effusions (Photo courtesy of Microsystems & Nanoengineering: Zhu, Z., Ren, H., Wu, D. et al.)

Microfluidic Device for Cancer Detection Precisely Separates Tumor Entities

Tumor cell clusters are increasingly recognized as crucial in cancer pathophysiology, with growing evidence of their increased resistance to treatment and higher metastatic potential compared to single tumor cells.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.