We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

A First: Using Graphene to Detect Cancer Cells

By LabMedica International staff writers
Posted on 27 Dec 2016
Print article
Image: Normal and cancerous brain cells interfaced with graphene show different activity levels under Raman spectroscopy imaging (Photo courtesy of Vikas Berry, University of Illinois at Chicago).
Image: Normal and cancerous brain cells interfaced with graphene show different activity levels under Raman spectroscopy imaging (Photo courtesy of Vikas Berry, University of Illinois at Chicago).
Using Raman spectroscopy in developing a new technology that could improve diagnosis and monitoring of cancer, researchers have, for the first time, successfully used graphene to distinguish cancer from healthy cells. The system could potentially also be used to distinguish between various other cell types or cell activities.

By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago (Chicago, IL, USA) have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a non- or less invasive tool for early cancer diagnosis. “This graphene system is able to detect the level of activity of an interfaced cell,” said Vikas Berry, associate professor at UIC, who led the research along with Ankit Mehta, assistant professor at UIC College of Medicine.

“Graphene is the thinnest known material and is very sensitive to whatever happens on its surface,” added Prof. Berry. The nanomaterial is composed of a single layer of carbon atoms linked in a hexagonal chicken-wire pattern, and all the atoms share a cloud of electrons moving freely about the surface. “The cell’s interface with graphene rearranges the charge distribution in graphene, which modifies the energy of atomic vibration as detected by Raman spectroscopy,” he explained. Raman spectroscopy is routinely used to study graphene. The atomic vibration energy in graphene’s crystal lattice differs depending on whether it’s in contact with a cancer cell or a normal cell because the cancer cell’s hyperactivity leads to a higher negative charge on its surface and the release of more protons. The electric field around the cell pushes away electrons in graphene’s electron cloud, which changes the vibration energy of the carbon atoms. The change in vibration energy can be pinpointed by Raman mapping with a resolution of 300 nanometers allowing characterization of the activity of a single cell.

Recently, Prof. Berry and other coworkers had introduced nanoscale ripples in graphene, causing it to conduct differently in perpendicular directions, useful for electronics. They wrinkled the graphene by draping it over a string of rod-shaped bacteria, then vacuum-shrinking the germs. “We took the earlier work and sort of flipped it over,” said Prof. Berry, “Instead of laying graphene on cells, we laid cells on graphene and studied graphene’s atomic vibrations.”

The new study examined cultured human brain cells, comparing normal astrocytes to their cancerous counterpart, the highly malignant brain tumor glioblastoma multiforme. The technique is now being studied in a mouse model of cancer, with results that are “very promising,” said Prof. Berry. Experiments with patient biopsies would be further down the road.

“Once a patient has brain tumor surgery, we could use this technique to see if the tumor relapses,” said Prof. Berry, “For this, we would need a cell sample we could interface with graphene and look to see if cancer cells are still present.”

The same technique may also work to differentiate between other types of cells or the activity of cells. “We may be able to use it with bacteria to quickly see if the strain is Gram-positive or Gram-negative,” said Prof. Berry, “We may be able to use it to detect sickle cells.”

The study, by Keisham B et al, was published November 14, 2016, in the journal ACS Applied Materials and Interfaces.

Related Links:
University of Illinois at Chicago

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.