We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Novel Device May Provide Rapid POC Assessment of Clot Ability

By Michal Siman-Tov
Posted on 13 Dec 2016
Print article
Image: The portable ClotChip will undergo clinical trials to further assess its ability to rapidly measure blood clotting at point-of-care with accuracy comparable to laboratory testing (Photo courtesy of Case Western Reserve University).
Image: The portable ClotChip will undergo clinical trials to further assess its ability to rapidly measure blood clotting at point-of-care with accuracy comparable to laboratory testing (Photo courtesy of Case Western Reserve University).
Researchers have developed a sensor that, on initial testing, accurately assessed blood-clotting ability 95 times faster than current methods, which uses only a single drop of blood. The device also provided more information than existing approaches.

The new device, “ClotChip,” was developed by researchers at Case Western Reserve University (CWRU; Cleveland, OH, USA) to provide rapid and accurate assessments essential for providing appropriate care for patients with blood clotting problems. XaTek, a new Cleveland-based company, has licensed the technology for ClotChip with a goal of bringing it to market within three years.

“ClotChip is designed to minimize the time and effort for blood-sample preparation. [It can] be used at the doctor’s office or other points-of-care for patients on anticoagulation therapy, antiplatelet therapy, or who have suffered a traumatic injury causing bleeding,” said Pedram Mohseni, professor of electrical engineering and computer science (EECS) at CWRU, who led the development of ClotChip with Michael Suster, an EECS senior research associate.

Existing measures typically require patients to visit laboratories where expert technicians administer tests, an approach that typically is time-consuming and expensive. While a few methods exist to allow on-site testing, to date they have not been nearly as precise as laboratory-based methods.

In preliminary tests ClotChip provided results in 15 minutes, as compared to current measures that can take a day or even longer. It also provided more information about the coagulation process, including effects of a relatively new class of drugs – target-specific oral anticoagulants (TSOACs).

TSOACs block clots from forming in a different way than warfarin (e.g. brand name Coumadin). Warfarin can interact negatively with several medications and foods and also requires frequent blood tests to monitor the drug’s effects. The new medications, including rivaroxaban (Xarelto) and apixaban (Eliquis), have been marketed as a far more convenient alternative. To date, however, the US Food and Drug Administration (FDA) has not approved a device to determine the impact of the new drugs.

With use of TSOACs growing rapidly, “there’s a huge opportunity and need,” said John Zak, president and CEO of XaTek, “There’s no readily available point-of-care, cost-effective, and accurate way to monitor these drugs.” He said the company hopes to complete a pilot clinical study and data analysis of ClotChip use on 200 patients at the Louis Stokes Cleveland VA Medical Center by the end of 2017. If the device proves effective in that initial evaluation, XaTek would seek to launch a full clinical trial within the following two years; and from there would seek FDA approval.

To monitor clotting, ClotChip uses an electrical technique called miniaturized dielectric spectroscopy, an approach that Prof. Mohseni, Dr. Suster, and team began developing six years ago. In essence, the technique applies an external electric field to the drop of blood, then quantitatively measures how the blood affects that field. The measurements reflect ability of the blood to clot. They then began collaborating with Evi Stavrou, assistant professor of hematology and oncology, Case Western Reserve School of Medicine. The three researchers are also investigators at Advanced Platform Technology (APT) Research Center.

The team found that ClotChip's sensitivity to the blood coagulation process made it an appealing option for point-of-care testing. “Our device gives you different information—and more information—than other devices out there,” said Prof. Stavrou, “The sensitivity and discriminatory ability of the device, when compared to standard coagulation tests, is what excites me very much.” And the device works so quickly that emergency responders could use it on site to determine whether a patient in trauma is on one of the blood-thinner medications. Such critical information also could be invaluable to medics in wartime.

Related Links:
Case Western Reserve University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.