We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Diagnostic Tool: Identification of Cancer Cells by Deformability Cytometry

By LabMedica International staff writers
Posted on 09 Dec 2013
Print article
Image: An artist’s depiction of a cell being squeezed in a high-speed fluid flow (Photo courtesy of UCLA - University of California, Los Angeles).
Image: An artist’s depiction of a cell being squeezed in a high-speed fluid flow (Photo courtesy of UCLA - University of California, Los Angeles).
Image: Invasive deformability: a transition to invasive malignant cells in a tumor is associated with the cell\'s increased ability to stretch, which may allow for invasion through tight tissue junctions (Photo courtesy of UCLA - University of California, Los Angeles).
Image: Invasive deformability: a transition to invasive malignant cells in a tumor is associated with the cell\'s increased ability to stretch, which may allow for invasion through tight tissue junctions (Photo courtesy of UCLA - University of California, Los Angeles).
A system that classifies individual cells according to their structural behavior (mechanophenotyping) has been used to identify cancers in cases that were difficult or impossible to resolve with traditional cytological techniques.

Investigators at the University of California, Los Angeles (USA) based the development of the "deformability cytometer" on the understanding that cells are not simple sacks of fluid. They also contain viscous and elastic properties related to the membranes that surround them; their internal structural elements, such as organelles; and the packed DNA arrangement in their nuclei. Because variations in these properties can provide information about cells' state of activity and can be indicative of diseases such as cancer, they are important to measure.

The deformability cytometer instrument consists of a miniaturized microfluidic chip that sequentially aligns cells so that they hit a wall of fluid at rates of thousands of cells per second. A specialized camera captures microscopic images of these cells at intervals of 140,000 pictures per second, and these images are then automatically analyzed by custom software to extract information about the cells' physical properties.

In a study, the investigators at the University of California, Los Angeles and colleagues at Harvard University (Boston, MA, USA) used the technique to diagnose malignant pleural effusions, in which disseminated tumor cells are difficult to accurately identify by traditional cytology.

An algorithmic diagnostic scoring system was established on the basis of quantitative features of two-dimensional distributions of single-cell mechanophenotypes from 119 samples. The scoring system classified 63% of the samples into two high-confidence regimes with 100% positive predictive value or 100% negative predictive value, and achieved an area under the curve of 0.86. This performance was suitable for a prescreening role to focus cytopathologist analysis time on a smaller fraction of difficult samples. In addition, samples labeled as “atypical cells,” which require additional time and follow-up, were classified in high-confidence regimes in eight of 15 cases. Further, 10 of 17 cytology-negative samples corresponding to patients with concurrent cancer were correctly classified as malignant or negative, in agreement with six-month outcomes.

"Building off of these results, we are starting studies with many more patients to determine if this could be a cost-effective diagnostic tool and provide even more detailed information about cancer origin," said senior author Dr. Dino Di Carlo, associate professor of bioengineering at the University of California, Los Angeles. "It could help to reduce laboratory workload and accelerate diagnosis, as well as offer doctors a new way to improve clinical decision-making."

The clinical study was published in the November 20, 2013, online edition of the journal Science Translational Medicine.

Related Links:

University of California, Los Angeles
Harvard University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.