We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Bacteria-Based Test Strips Can Monitor Blood Glucose

By LabMedica International staff writers
Posted on 26 Jan 2012
Print article
Segments of DNA embedded in bacteria can be coded to detect changes in osmolarity resulting from the presence of glucose in a blood sample.

Students at the Missouri University of Science and Technology (MST, Rolla, USA) used a nonvirulent strain of E.coli with designed genes integrated in the bacteria’s DNA, enabling them to sense the presence of glucose in correlation to changes in osmolarity. When glucose is detected, the bacteria emit a yellow glow, and as its concentration rises, so does the light emitted glow brighter. The system might also eventually serve as the basis for a new method to monitor blood glucose levels by replacing the fluorescent gene with one that would make the bacteria change color, based on glucose concentrations.

To make the device, the students used an intermediate biobrick with a ribosome-binding site and the reporter gene (eYFP), which was then coupled to another biobrick that had three binding sites for the transcriptional regulatory protein phosphorylated OmpR. The phosphorlyation of OmpR by EnvZ (an inner membrane protein that senses osmolarity) positively correlated with the osmolarity of the system. When one or two of the binding sites are occupied, RNA polymerase is recruited to begin downstream transcription of eYFP. However, when all three OmpR binding sites are occupied, RNA polymerase cannot bind, the reporter gene can no longer be produced, and the system is inhibited.

As osmolarity increases from very low levels, the fluorescence produced by the system increases, until it reaches a threshold osmolarity level that when crossed causes the fluorescence to decrease as a result of the ensuing inherent down-regulation of the system. The activity of the system can be quantified because the two-component regulatory system of EnvZ and OmpR controls transcription of the eYFP gene, dictating the level of fluorescence.

“All you would have to do is put the DNA inside a bacteria and you've got your test strip,” said Erica Shannon, a senior year student in biological sciences at MST. “In the future, based on further research, an insulin gene could be added to this system for use in insulin pumps, where specific glucose levels trigger insulin production.”

The project was developed the system as part of an annual competition sponsored by the International Genetically Engineered Machine Foundation (iGEM; Boston, MA, USA) held during October 2011, in Indianapolis (IN, USA); the MST iGEM chapter received a silver medal for their effort.

Related Links:

Missouri University of Science and Technology
International Genetically Engineered Machine Foundation



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.