We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Tumor Cells in Blood Samples Predict Prostate Cancer Spread

By LabMedica International staff writers
Posted on 25 Nov 2016
Print article
Image: The Parsortix system uses a patented micro-fluidic technology in the form of a disposable cassette to capture and then harvest circulating tumor cells (CTCs) from blood (Photo courtesy of ANGLE).
Image: The Parsortix system uses a patented micro-fluidic technology in the form of a disposable cassette to capture and then harvest circulating tumor cells (CTCs) from blood (Photo courtesy of ANGLE).
A group of circulating tumor cells (CTC) in prostate cancer patient blood samples has been found which are linked to the spread of the disease and this is the first time these cell types have been shown to be a promising marker for prostate cancer spread.

There are around 46,500 new cases of prostate cancer each year in the UK, and around 11,000 people die from the disease each year. Epithelial to mesenchymal transition (EMT) is a critical step for tumor metastasis and in prostate cancer; circulating cells expressing the mesenchymal marker Vimentin (VIM) are cancer cells.

Scientists at the Barts Cancer Institute (London, UK) studied 81 samples from men with prostate cancer, comprising 38 untreated and 43 progressive diseases, and looked for cells that were gaining the ability to migrate and invade through the body. They optimized the Parsortix size and deformability-based platform (ANGLE, Plc, Guilford, UK) for the isolation of CTCs with both epithelial and mesenchymal properties and developed a multiple fluorescence in situ hybridization (FISH) rehybridization method to analyze multiple genomic changes on the CTCs after immunofluorescence signals were completely stripped.

The team analyzed several genomic regions, and detected genomic alterations in a similar proportion of CK+ and VIM+ groups of CD45- circulating cells. These genomic aberration results indicate that majority of VIM+/CD45- cells are circulating prostate cancer cells with EMT. Among the CTC types, the number of EMTing CTCs correlated the best with the presence of metastases and high risk localized disease and had a closest area under the ROC curve (AUC) to prostate specific antigen (PSA) level for distinguishing patients with detectable metastases.

The authors of the study concluded that they had developed a novel CTC detection and genomic analysis approach, which can efficiently analyze CTCs undergoing/undergone EMT. This greatly enhances our ability to investigate cancer metastasis process and to predict/monitor cancer progression using CTCs. Yong-Jie Lu, MD, PhD, the lead author said, “Our study shows that the number of these specific cells in a patient's sample is a good indicator of prostate cancer spreading. By identifying these cells, which have gained the ability to move through the body, we have found a potential new way to monitor the disease.” The study was presented at the National Cancer Research Institute Cancer Conference held in Liverpool, UK.

Related Links:
Barts Cancer Institute
ANGLE
Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.