We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Genomic Fingerprinting Helps Predict Prostate Tumor Aggressiveness

By LabMedica International staff writers
Posted on 06 Oct 2016
Print article
Image: The Prolaris assay measures how fast the cells in the prostate tumor are dividing (Photo courtesy of Myriad Genetics).
Image: The Prolaris assay measures how fast the cells in the prostate tumor are dividing (Photo courtesy of Myriad Genetics).
Next-generation sequencing is revealing genomic heterogeneity in localized prostate cancer (CaP), but incomplete sampling of CaP multiclonality has limited the implications for molecular subtyping, stratification, and systemic treatment.

While the majority of prostate cancers are slow growing and not fatal, some are aggressive and lethal. Genomic fingerprinting can help predict a tumor's aggressiveness and tailor treatment plans; however, in the majority of cases involving multiple prostate tumors, only the largest tumor is typically fingerprinted resulting in more aggressive tumors potentially going undetected.

A team of scientists working with those at the Cleveland Clinic (Cleveland, OH, USA) selected four consecutive patients who presented with CaP, one with intermediate-risk and three with high-risk, and underwent radical prostatectomy (RP) at Roswell Park Cancer Institute (RPCI, Buffalo, NY, USA) in June and July 2014. None of the patients had received neoadjuvant therapy.

Presurgical information on CaP content and a customized tissue procurement procedure were used to isolate non-microscopic and noncontiguous CaP foci in radical prostatectomy specimens. Three cores were obtained from the index lesion and one core from smaller lesions. Ribonucleic acid (RNA) and DNA were extracted simultaneously from 26 cores with more than 90% CaP content and analyzed using whole-exome sequencing, single-nucleotide polymorphism arrays, and RNA sequencing. The impact of genomic alterations on CaP molecular classification, gene sets were measured in Oncotype DX (Genomic Health), Prolaris (Myriad Genetics) and Decipher (GenomeDx) assays, and androgen receptor activity among CaP cores was determined.

The scientists found there was considerable variability in genomic alterations among CaP cores, and between RNA- and DNA-based platforms. Heterogeneity was found in molecular grouping of individual CaP foci and the activity of gene sets underlying the assays for risk stratification and androgen receptor activity, and was validated in independent genomic data sets. Determination of the implications for clinical decision-making requires follow-up studies.

Hannelore Heemers, PhD, who led the study said, “We examined the molecular composition of heterogeneous cancerous tumors in a patient's prostate. We found a lot of genetic differences among these tumors, and concluded that information from a single cancer biopsy is not sufficient to guide treatment decisions. Precise treatment is more complicated and the findings demonstrate a weakness in current genetic fingerprinting in prostate cancer.” The study was published on August 21, 2016, in the journal European Urology.

Related Links:
Cleveland Clinic
Roswell Park Cancer Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.