We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Analysis of Circulating Free DNA May Replace Tumor Biopsy for Detection of Non-Small-Cell Lung Cancer

By LabMedica International staff writers
Posted on 10 Mar 2015
Print article
Image: Erlotinib bound to EGRF at 0.26 nm resolution; surface color indicates hydrophobicity (Photo courtesy of Wikimedia Commons).
Image: Erlotinib bound to EGRF at 0.26 nm resolution; surface color indicates hydrophobicity (Photo courtesy of Wikimedia Commons).
A recent paper showed that analysis of circulating free DNA (cfDNA) in blood samples could replace biopsy as a means for detecting patients with advanced non-small-cell lung cancer (NSCLC) that was distinguished by oncogenic epidermal growth factor receptor (EGFR) mutations.

This study was an extension of the 2007-2011 EURTAC (EURopean TArceva vs. Chemotherapy) trial. EURTAC demonstrated the efficacy of erlotinib (Tarceva) compared with standard chemotherapy for the first-line treatment of European patients with advanced NSCLC with oncogenic EGFR mutations (exon 19 deletion or L858R mutations in exon 21) in tumor tissue.

Erlotinib is an epidermal growth factor receptor (EGFR) inhibitor that specifically targets the EGFR tyrosine kinase, which is highly expressed and occasionally mutated in various forms of cancer. It binds in a reversible fashion to the adenosine triphosphate (ATP) binding site of the receptor. For the signal to be transmitted, two EGFR molecules need to come together to form a homodimer. These then use the molecule of ATP to trans-phosphorylate each other on tyrosine residues, which generates phosphotyrosine residues, recruiting the phosphotyrosine-binding proteins to EGFR to assemble protein complexes that transduce signal cascades to the nucleus or activate other cellular biochemical processes. By inhibiting the ATP, formation of phosphotyrosine residues in EGFR is not possible and the signal cascades are not initiated.

In the current study researchers associated with the Spanish Lung Cancer Group examined the feasibility of using circulating free DNA (cfDNA) from blood samples of patients with advanced non-small-cell lung cancer as a replacement for tumor biopsies. To this end they used a novel peptide nucleic acid (PNA)–mediated 5´ nuclease real-time polymerase chain reaction (PCR) (TaqMan) assay to examine EGFR mutations in cfDNA isolated from 97 baseline blood samples obtained from patients that had participated in the EURTAC trial.

Results revealed that cfDNA EGFR mutations were detected in 76 of 97 samples (78%) from the patients. Median overall survival was shorter in patients with the L858R mutation in cfDNA than in those with the exon 19 deletion (13.7 versus 30 months). For the 76 patients with EGFR mutations in cfDNA, only erlotinib treatment was an independent predictor of longer disease progression-free survival.

Senior author Dr. Rafael Rosell, professor of medical oncology at the Hospital Germans Trias I Pujol (Badalona, Spain) said, "Testing of tumor tissue remains the recommended method for detecting the presence of oncogenic EGFR mutations; however, the amount of tumor tissue obtained by biopsy is often insufficient, especially in advanced NSCLC, raising the question of whether cfDNA may be used as a surrogate liquid biopsy for the noninvasive assessment of EGFR mutations."

The study was published in the February 26, 2015, online edition of JAMA Oncology.

Related Links:

Hospital Germans Trias i Pujol


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.