We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

New Gene Identified That Drives Triple-Negative Breast Cancer

By LabMedica International staff writers
Posted on 25 Jan 2015
Print article
Image: The ABI 7500 HT real-time polymerase chain reaction system (Photo courtesy of Applied Biosystems).
Image: The ABI 7500 HT real-time polymerase chain reaction system (Photo courtesy of Applied Biosystems).
A novel gene has been discovered that, when mutated, can drive development and progression of triple-negative breast cancer which is an aggressive form of the disease that accounts for 10% to 20% of breast cancers.

Triple-negative breast cancer (TNBC) has poor prognostic outcome compared with other types of breast cancer and the molecular and cellular mechanisms underlying TNBC pathology are not fully understood.

An international team of scientists led by those at the Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK) assessed alterations to genes that influence the actions of stem cells and developing tissues, as past studies from the team has indicated that these alterations affect cancer development. By assessing these gene alterations among breast cancer cells from nearly 3,000 patients, the team found that a gene called B-cell lymphoma/leukemia 11A (BCL11A) was particularly active in triple-negative breast cancer.

The team used both a mouse model and human cells and various techniques to identify the gene. Ribonucleic acid (RNA) from sorted cells was extracted using PicoPure RNA isolation kit (Molecular Devices; Sunnyvale, CA, USA) and real-time polymerase chain reactions (PCR) were run in ABI-7900HT (Applied Biosystems; Foster City, CA, USA) in triplicate. Immunohistochemistry was carried using a fluorescence Axiophot microscope (Zeiss; Oberkochen, Germany).

Increased BCL11A activity was identified in around eight out of 10 basal-like breast cancers and was associated with more aggressive tumors. What is more, when the team reduced BCL11A activity in three samples of human triple-negative breast cancer cells, they found that these cells lost some cancer-like characteristics. When these cells were introduced to mice, they were less likely to drive tumor growth. The team found that BCL11A is important for the normal development of breast stem cells and progenitor cells. Past studies have shown that mutations in these cells may drive the development of basal-like cancers.

Walid Khaled, PhD, the lead author of the study said, “Our gene studies in human cells clearly marked BCL11A as a novel driver for triple-negative breast cancers. By increasing BCL11A activity we increase cancer-like behavior; by reducing it, we reduce cancer-like behavior.” The study was published on January 9, 2015, in the journal Nature Communications.

Related Links:

Wellcome Trust Sanger Institute
Molecular Devices
Applied Biosystems


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.