We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

New Partnership Designed to Automate Dystrophin Measurement

By LabMedica International staff writers
Posted on 31 Aug 2014
Print article
Image: Histopathology of increased endomysial connective tissue from a patient with Duchenne Muscular Dystrophy. Necrotic fibers arrowed (Photo courtesy of Washington University in St. Louis).
Image: Histopathology of increased endomysial connective tissue from a patient with Duchenne Muscular Dystrophy. Necrotic fibers arrowed (Photo courtesy of Washington University in St. Louis).
A developer of innovative ribonucleic acid (RNA)-based therapeutics, Sarepta Therapeutics, Inc. ( Cambridge, MA, USA), and a leading tissue-based companion diagnostics firm, Flagship Biosciences LLC (Boulder, CO, USA) announced a multiyear, multiproduct partnership.

The partnership is for the development of automated quantitative endpoint measurements in muscular dystrophy to support the advancement of Sarepta's Duchenne muscular dystrophy (DMD) drug pipeline, including its lead candidate, eteplirsen. DMD is caused by the absence of functional dystrophin in affected patients' muscle tissue.

Dystrophin protein level is a fundamental biomarker used to assess therapies that aim to produce and restore the expression of dystrophin, such as exon-skipping therapies like eteplirsen. In order to optimally and efficiently evaluate therapeutic efficacy in patients, the next generation of protocols are being developed to digitally automate and standardize dystrophin measurement in tissue biopsies to speed the process while ensuring consistency. The establishment of these new standardized methods for automated quantitation is being enabled though the proprietary image analysis platform and digital pathology capabilities developed by Flagship Bioscience.

DMD is an X-linked rare degenerative neuromuscular disorder causing severe progressive muscle loss and premature death. A devastating and incurable muscle-wasting disease, DMD is associated with specific errors in the gene that codes for dystrophin, a protein that plays a key structural role in muscle fiber function. Progressive muscle weakness in the lower limbs spreads to the arms, neck and other areas. Eventually, increasing difficulty in breathing due to respiratory muscle dysfunction requires ventilation support, and cardiac dysfunction can lead to heart failure. The condition is universally fatal, and death usually occurs before the age of 30.

G. David Young, DVM, DACVP, DABT, Director of Pathology at Flagship, said, “Flagship Biosciences has developed tools and expertise in quantitative pathology, image analysis, and tissue-based assays that are well-suited for use in a regulated environment. It's exciting to work with a partner like Sarepta to design and implement an integrated fit-for-purpose assay and automated quantitative interpretation approach that accelerates the development of drugs for unmet needs such as eteplirsen for the treatment of DMD."

Related Links:

Sarepta Therapeutics
Flagship Biosciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.