We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blood-Based DNA Test May Replace Heart Biopsy for Detecting Transplant Rejection

By LabMedica International staff writers
Posted on 01 Jul 2014
Print article
Image: The heart biopsy procedure is most often done by inserting the biopsy instrument (bioptome) through a small incision in the skin on the right side of the neck. Four or five separate pieces of tissue are needed for adequate sampling (Photo courtesy of Stanford Hospital).
Image: The heart biopsy procedure is most often done by inserting the biopsy instrument (bioptome) through a small incision in the skin on the right side of the neck. Four or five separate pieces of tissue are needed for adequate sampling (Photo courtesy of Stanford Hospital).
In a proof-of-principle study, a noninvasive DNA-based blood test was found to be more accurate than the standard heart biopsy procedure for detecting heart transplant rejection.

In a search for alternatives to the heart biopsy procedure, which is uncomfortable and can cause complications such as heart rhythm abnormalities or valve damage, investigators at Stanford University (Palo Alto, CA, USA) developed a cell-free DNA test that detects donor DNA in the blood of the recipient. This assay is based on the release of genetic material into the bloodstream by heart cells attacked and killed by the immune system. Thus, in transplant recipients not experiencing rejection, donor DNA accounts for less than 1% of all cell-free DNA in the recipient's blood. During rejection episodes, however, the percentage of donor DNA increases to about 3%–4%.

In a recent paper the investigators described a proof-of-principle study of the universal, noninvasive diagnostic method based on high-throughput screening of circulating cell-free donor-derived DNA (cfdDNA). The study was carried out on a small retrospective cohort of 565 samples from 65 patients. In the study, circulating cell-free DNA was purified from plasma and sequenced to quantify the fraction of cfdDNA.

Through a comparison with heart biopsy results, the investigators demonstrated that cfdDNA enabled diagnosis of acute rejection after heart transplantation. They were able to accurately detect the two main types of rejection (antibody-mediated rejection and acute cellular rejection) in 24 patients who suffered moderate to severe rejection episodes, one of whom required a second transplant. They were also able to detect signs of rejection up to five months before detection by the biopsy method.

"We have found that this cell-free DNA assay is a very accurate way to diagnose acute rejection, sometimes weeks to months before a biopsy picks up any signs," said senior author Dr. Kiran Khush, assistant professor of medicine at Stanford University. "This earlier detection may prevent irreversible damage to the transplanted organ. This test has the potential to revolutionize the care of our patients. It may also allow us to conduct several diagnostic tests simultaneously. For example, we could also look for microbial sequences in the blood sample to rule out infection or other complications sometimes experienced by transplant recipients. It could allow us to determine whether shortness of breath experienced by a patient is due to an infection or the start of a rejection episode. It could be a one-stop shop for multiple potential problems."

Stanford University has applied for a patent relating to the test described in the study, which was published in the June 18, 2014, online edition of the journal Science Translational Medicine.

Related Links:

Stanford University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.