Features | Partner Sites | Information | LinkXpress
Sign In
FOCUS DIAGNOSTICS, INC.
AB Sciex
SEEGENE

Genetic Root Identified For Early-Onset Prostate Cancer

By Labmedica International staff writers
Posted on 28 Feb 2013
Early-onset prostate cancer (EOPC) requires early diagnosis and definitive treatment due to the long life expectancy of younger patients and their higher risk of dying from the disease.

Deep sequencing-based genomics analysis has been used to compare the genomic alteration landscapes of EOPC patients with those with the classical elderly-onset prostate cancer.

Scientists at the European Molecular Biology Laboratory (EMBL; Heidelberg, Germany) sequenced the entire genetic code of cells in 11 tumors from EOPC patients, comparing it with the code in tumors from seven patients with elderly-onset prostate cancer. They used these genomics data, together with a large-scale tissue microarray (TMA)-based validation platform, to pinpoint molecular features linked with early disease occurrence.

The investigators found that the receptor that binds testosterone, called the androgen receptor, is very active in tumors from young patients, causing a number of genes to rearrange and become cancer promoting. The genomes of elderly prostate cancer patients primarily showed abnormalities that were not caused by the androgen receptor's activity. Data from more than 10,000 additional patients showed that androgen receptor activity and corresponding gene rearrangements were indeed higher in younger patients.

Jan Korbel, PhD, the cosenior author of the study, said, "It's been unclear whether prostate cancer in the young is explainable by a different mechanism than prostate cancer in the elderly. Our study implicates a different cause of disease in young patients. Interestingly, young men have generally higher testosterone levels than elderly men, which raises the question of whether high physiological levels of testosterone in young men may be linked with early-onset prostate cancer, a question that we are keen to address in the future." The authors concluded that their findings demonstrate striking age-dependent differences in the mechanistic landscapes of structural genomic alterations in a common cancer. The study was published on February 11, 2013, in the journal Cancer Cell.

Related Links:

European Molecular Biology Laboratory




GREINER-BIO-ONE
ADVANCED INSTRUMENTS
PURITAN MEDICAL
BioConferenceLive

Channels

Genetic Tests

view channel
Image: The QuantiTect Reverse Transcription Kit (Photo courtesy of Qiagen)

Blood Tests Predict Risk of Sudden Cardiac Death

A simple blood test can predict a person's risk for sudden cardiac death, enabling physicians to quickly and accurately assess a patient's need for an implantable cardiac defibrillator (ICD).... Read more

Hematology

view channel

Blood Donations Screened for Viruses Using Multiplex Assay

A global healthcare company was chosen to partner the Japanese Red Cross (JRC; Tokyo, Japan) for nucleic acid screening of the nation's blood supply. Under the terms of the 7-year agreement, the healthcare company, Grifols (Barcelona, Spain) will provide the JRC with its newest automation platform, the Procleix Panther... Read more

Industry News

view channel

Beckman Coulter and hc1.com Enter Strategic Partnership for Innovative Healthcare Cloud System

The diagnostics division of Beckman Coulter (Brea, CA, USA) and hc1.com (Indianapolis, IN, USA) have announced a partnership to bring an innovative healthcare cloud-technology system to clinical laboratories. The system, hc1.com's "Healthcare Relationship Cloud," helps turn large amounts of clinical data into actionable... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.