Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
RANDOX LABORATORIES
FOCUS DIAGNOSTICS, INC.

Genetic Root Identified For Early-Onset Prostate Cancer

By Labmedica International staff writers
Posted on 28 Feb 2013
Early-onset prostate cancer (EOPC) requires early diagnosis and definitive treatment due to the long life expectancy of younger patients and their higher risk of dying from the disease.

Deep sequencing-based genomics analysis has been used to compare the genomic alteration landscapes of EOPC patients with those with the classical elderly-onset prostate cancer.

Scientists at the European Molecular Biology Laboratory (EMBL; Heidelberg, Germany) sequenced the entire genetic code of cells in 11 tumors from EOPC patients, comparing it with the code in tumors from seven patients with elderly-onset prostate cancer. They used these genomics data, together with a large-scale tissue microarray (TMA)-based validation platform, to pinpoint molecular features linked with early disease occurrence.

The investigators found that the receptor that binds testosterone, called the androgen receptor, is very active in tumors from young patients, causing a number of genes to rearrange and become cancer promoting. The genomes of elderly prostate cancer patients primarily showed abnormalities that were not caused by the androgen receptor's activity. Data from more than 10,000 additional patients showed that androgen receptor activity and corresponding gene rearrangements were indeed higher in younger patients.

Jan Korbel, PhD, the cosenior author of the study, said, "It's been unclear whether prostate cancer in the young is explainable by a different mechanism than prostate cancer in the elderly. Our study implicates a different cause of disease in young patients. Interestingly, young men have generally higher testosterone levels than elderly men, which raises the question of whether high physiological levels of testosterone in young men may be linked with early-onset prostate cancer, a question that we are keen to address in the future." The authors concluded that their findings demonstrate striking age-dependent differences in the mechanistic landscapes of structural genomic alterations in a common cancer. The study was published on February 11, 2013, in the journal Cancer Cell.

Related Links:

European Molecular Biology Laboratory




Sekisui Diagnostics
PURITAN MEDICAL
EUROIMMUN AG
comments powered by Disqus
Life Technologies

Channels

Lab Technology

view channel
Image: Visualization from a numerical simulation of a cell flowing past the obstacle through the microfluidic device (Image courtesy of KTH – The Royal Institute of Technology).

Microfluidic Device Could Improve Biomarker Analyses

A new microfluidic device could offer a more reliable alternative for detecting biomarkers in patients facing such illnesses as cancer or malaria. The physical attributes of cells are important biomarkers... Read more

Industry News

view channel

IDT Acquires SURVEYOR Nuclease Product Line from Transgenomic

The SURVEYOR line is to be used by Integrated DNA Technologies (IDT; Coralville, IA, USA) primarily to support researchers performing mutation detection and potentially-clinical genome editing, and by Transgenomic, Inc. (Omaha, NE, USA) primarily to support diagnostic and other clinical applications. IDT, a world leader... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.