We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Extended Multilocus Sequence Typing Developed for Leptospirosis

By LabMedica International staff writers
Posted on 05 Oct 2016
Print article
Image: A photomicrograph of Leptospirosis bacteria magnified ×200 in a dark field optical microscope (Photo courtesy Dr. Steve H Fisyh).
Image: A photomicrograph of Leptospirosis bacteria magnified ×200 in a dark field optical microscope (Photo courtesy Dr. Steve H Fisyh).
Leptospirosis is a zoonotic disease caused by pathogenic species of Leptospira that can be carried naturally by most mammalian species and transmission to humans most commonly occurs via direct animal contact or via water contaminated with animal urine.

The gold standards for laboratory diagnosis of leptospirosis are culture or a four-fold rise in antibody titer between admission and convalescent samples by the microscopic agglutination test (MAT). Culture of Leptospira spp. is time consuming and diagnosis by MAT is retrospective by nature, hence both methods have disadvantages as diagnostic tools.

A team of scientists led by those at Public Health England (London, UK) modified an existing polymerase chain reaction (PCR) based on multilocus sequence typing (MLST) scheme by designing nested primers including anchors for facilitated subsequent sequencing. The assay was applied to various specimen types from patients diagnosed with leptospirosis between 2014 and 2015 in the United Kingdom (UK) and the Lao Peoples Democratic Republic (Lao PDR). Of 44 clinical samples (23 serum, six whole blood, three buffy coat, 12 urine) PCR positive for pathogenic Leptospira spp. at least one allele was amplified in 22 samples (50%) and used for phylogenetic inference.

DNA from bacterial isolates and Lao PDR samples was extracted using the QIAmp DNA Mini Kit (Qiagen). DNA from UK samples was extracted on the MagNA Pure Compact (Roche Diagnostics) using the DNA Bacteria Protocol. The PCR products were purified on a Biomek NXP automated liquid handling robot (Beckman Coulter Life Sciences) using Beckman Coulter Ampure XP paramagnetic beads. Sanger sequencing was carried out on the 3730XL Genetic Analyzer (Applied Biosystems).

The team obtained full allelic profiles from ten specimens, representing all sample types (23%). No nonspecific amplicons were observed in any of the samples. Of twelve PCR positive urine specimens three gave full allelic profiles (25%) and two a partial profile. Phylogenetic analysis allowed for species assignment. The predominant species detected was L. interrogans (10/14 and 7/8 from UK and Lao PDR, respectively). All other species were detected in samples from only one country (Lao PDR: L. borgpetersenii [1/8]; UK: L. kirschneri [1/14], L. santarosai [1/14], L. weilii [2/14]).

The authors concluded that typing information of pathogenic Leptospira spp. was obtained directly from a variety of clinical samples using a modified MLST assay. This assay negates the need for time-consuming culture of Leptospira prior to typing and will be of use both in surveillance, as single alleles enable species determination, and outbreaks for the rapid identification of clusters. The study was published on September 21, 2016, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:
Public Health England


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.