We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Protein Patterning: Novel Tool for Studying Sepsis

By LabMedica International staff writers
Posted on 18 Jan 2016
Print article
Image: Graph of mass-spectrometry-based mapping of tissue-specific protein in blood plasma, from the study of sepsis using quantitative targeted proteomics (Photo courtesy of Malmström laboratory, Lund University).
Image: Graph of mass-spectrometry-based mapping of tissue-specific protein in blood plasma, from the study of sepsis using quantitative targeted proteomics (Photo courtesy of Malmström laboratory, Lund University).
In a new approach using quantitative targeted proteomics, researchers have for the first time developed a way to use mass-spectrometry to measure hundreds of organ proteins in a single blood sample. The resulting protein patterns can help determine sepsis severity, which organs have been damaged, and may lead to faster diagnostics.

“We use the blood as a mirror reflecting what happens in the body,” said Johan Malmström biomedical scientist at Lund University (Lund, Sweden), whose brothers, medical intern Erik Malmström (Lund U.) and bioinformatician Lars Malmström University of Zurich (Zurich, Switzerland) are fellow researchers on the study. The team has succeeded to map the majority of all detected proteins from vital organs (e.g., heart, lung, liver, spleen, blood vessels) and have listed which proteins were specific to each organ.

“If you see in a blood sample that the amount of proteins from a specific organ significantly increases, it indicates damage to this organ. The method provides an understanding of the molecular events that take place during the course of a disease, and the possibility, using the same analysis, to study how different organs are affected”, explained Dr. E. Malmström.

Sepsis is a very complicated and precarious condition in which the immune system starts to react erroneously in different ways to the bacterial infection. It is often difficult to diagnose because symptoms (including high breathing rate, fever, rapid pulse, pain, confusion) occur in milder conditions as well. Disease progression can be very fast and become fatal within a few hours. Therefore, there is a great need for faster diagnosis and better understanding of the course of the disease.

Another researcher, Dr. Adam Linder (Lund U.), has begun to develop a diagnostic method based on HBP, a protein emitted from white blood cells and reflects the risk of hypotension. The Malmström group’s study of hundreds of different proteins could eventually be used to select other important proteins that can serve as biomarkers for different aspects of sepsis.

The new method is already an important research tool: “There is so much we don’t know about sepsis. Why do not all patients react the same way—why do some organs suffer the most damage in some patients and not in others? Do different bacteria cause the disease to progress? Can you divide patients into different subgroups, or bacteria, or does each new combination of patients and bacteria lead to a specific form of sepsis?” asked Dr. E. Malmström. The researchers have conducted their studies on animals and are now moving on to human tissue. Through a collaboration with surgeons at Skane University Hospital they have obtained samples of healthy tissue. Protein patterns of these samples can then be compared with the corresponding organ tissues in sepsis patients.

“Protein mapping like this has never been done before. The method can also be applied to other diseases for studying how pathological changes in various organs are reflected in a blood sample,” said Dr. Johan Malmström.

The study, by Malmström E, Kilsgard O, Hauri S, Smeds E, Herwald H, Malmström L, & Malmström J, was published January 6, 2016, in the journal Nature Communications.

Related Links:

Lund University
University of Zurich 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.