Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Edelman c/o Abbott Diagnostics

Events

18 Feb 2016 - 20 Feb 2016
25 Feb 2016 - 26 Feb 2016

Novel Microbes Identified, Linked to Severe Diarrhea

By Labmedica International staff writers
Posted on 09 Jul 2014
Print article
454 Life Sciences Genome Sequencer FLX system
454 Life Sciences Genome Sequencer (Photo courtesy of Roche Diagnostics)
Microorganisms have been identified that may trigger diarrheal disease and others that may protect against it, which were not widely linked to the condition previously.

Diarrheal diseases continue to contribute significantly to morbidity and mortality in infants and young children in developing countries and there is an urgent need to better understand the contributions of novel, potentially uncultured, diarrheal pathogens to severe diarrheal disease, as well as distortions in normal gut microbiota composition that might facilitate severe disease.

An international team of scientists led by those at the University of Maryland (College Park, MD, USA) surveyed the intestinal microbiota of 992 children from four under-developed countries in West Africa (The Gambia and Mali), East Africa (Kenya), and South Asia (Bangladesh). Stool samples were selected from a large case/control study of moderate-to-severe diarrhea in children aged less than five years. All samples were analyzed by traditional microbiological tests for known bacterial, viral, and eukaryotic pathogens.

DNA was isolated and extracted using the QIAamp DNA stool extraction kit (Qiagen; Venlo, The Netherlands). DNA was amplified using “universal” primers targeting the V1-V2 region of the 16S ribosomal ribonucleic acid (rRNA) gene, a small subunit of the ribosome, in bacteria. Both forward and reverse primers had a 5’ portion specific for use with FLX sequencing technology (454 Life Sciences; Branford, CT, USA).

The scientists identified statistically significant disease associations with several organisms already implicated in diarrheal disease, such as members of the Escherichia/Shigella genus and Campylobacter jejuni. They also found that organisms not widely believed to cause the disease, including Streptococcus and Granulicatella, correlated with the condition in their study. In addition, the study revealed that the Prevotella genus and Lactobacillus ruminis may play a protective role against diarrhea. In almost 50% of the children examined with diarrhea, the condition could not be attributed to a specific causal pathogen. The team also found numerous children carrying Shigella, which is known to cause problems, yet the children showed no signs of moderate to severe diarrhea.

The authors concluded that their analysis of the 16S rRNA gene-based taxonomic profile of diarrheal and control stool samples demonstrated a strong association between acute diarrheal disease and the overall taxonomic composition of the stool microbiota in young children from the developing world. O. Colin Stine, PhD, a professor and senior author of the study said, “We were able to identify interactions between microbiota that were not previously observed, and we think that some of those interactions may actually help prevent the onset of severe diarrhea.” The study was published on June 27, 2014, in the journal Genome Biology.

Related Links:

University of Maryland
454 Life Sciences


Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every 2 weeks containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Micromedic Technologies

Channels

Immunology

view channel
Image: Micrograph of prostatic adenocarcinoma with perineural invasion, conventional (acinar) type, the most common form of prostate cancer. Prostate biopsy, H&E stain (Photo courtesy of Nephron and Wikimedia).

Reduced PSA Screening May Delay Treatment for Earlier Onset Prostate Cancers

The recommendation against regular prostate specific antigen (PSA) screening for prostate cancer (PCa) has been in place for 2.5 years. The number of prostate needle biopsies (PNB) has been reduced and... Read more

Industry News

view channel
Image: The new CE-marked “illumigene Malaria” DNA amplification assay for detection of Plasmodium spp. DNA in human whole blood samples (Photo courtesy of Meridian Bioscience).

Collaboration Helps Accelerate Launch of New Malaria Test

The recent launch of a new in vitro diagnostic (IVD) assay, CE-marked for detection of Plasmodium spp. DNA in whole blood samples, was accomplished on an accelerated schedule via collaboration with “lean... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.