Features | Partner Sites | Information | LinkXpress
Sign In
RANDOX LABORATORIES
GLOBETECH PUBLISHING LLC
FOCUS DIAGNOSTICS, INC.

Microfluidic Device Could Improve Biomarker Analyses

By Labmedica International staff writers
Posted on 08 Jul 2014
Image: Visualization from a numerical simulation of a cell flowing past the obstacle through the microfluidic device (Image courtesy of KTH – The Royal Institute of Technology).
Image: Visualization from a numerical simulation of a cell flowing past the obstacle through the microfluidic device (Image courtesy of KTH – The Royal Institute of Technology).
A new microfluidic device could offer a more reliable alternative for detecting biomarkers in patients facing such illnesses as cancer or malaria.

The physical attributes of cells are important biomarkers in medicine, whether extracting circulating tumor cells from the blood of a cancer patient, or to measure the elasticity of red blood cells due to malaria infection.

Scientists at The Royal Institute of Technology (KTH; Stockholm, Sweden) proposed a microfluidic device that can sort elastic capsules by their deformability. The device consists of a duct embedded with a semi-cylindrical obstacle, and a diffuser which further enhances the sorting capability. The KTH team used extensive computational simulations to model a microfluidic device that would sort cells according to their elasticity. The work draws on numerical techniques and computational capabilities developed in the last decade to handle the complexity of microscale flows.

Most cell sorting techniques rely on the difference between chemical properties of the cells. The problem is chemical properties do not give pathologists the full picture. Two cells can have very similar chemical properties, but different physical properties. Size, shape and elasticity, or deformability, are important attributes that can be also enable cell sorting, given the right kind of device.

The scientists demonstrated that the device can operate reasonably well under changes in the initial position of the capsule. The efficiency of the device remains essentially unaltered under small changes of the obstacle shape from semicircular to semi-elliptic cross-section. Confinement along the direction perpendicular to the plane of the device increases its efficiency. This work is the first numerical study of cell sorting by a realistic microfluidic device.

Dhrubaditya Mitra, PhD, an assistant professor in theoretical physics and a coauthor of the study offers an example of why elasticity matters. “If you are infected with malaria, the physical nature of your red blood cells changes. They become harder and red blood cells also become harder as they get older too. These harder red blood cells are filtered by the spleen which acts like a sieve. The softer red blood cells can squeeze through the gaps but the harder ones cannot.” The study was published on June 20, 2014, in the journal Soft Matter.

Related Links:

The Royal Institute of Technology



KARL HECHT GMBH & CO KG
MEDLAB Asia
CELLAVISION AB
PERIPHERAL VISIONS INC

Channels

Genetic Tests

view channel
Image: Histopathology of tuberculoid leprosy in a skin section (Photo courtesy Dr. D.S. Ridley, Wellcome Images).

Genes Discovered Influence Risk of Developing Leprosy

Leprosy, a chronic dermatological and neurological disease, is caused by infection with Mycobacterium leprae, and its manifestation, progression and prognosis are strongly associated with the proficiency... Read more

Hematology

view channel
Image: Plastic bag containing 0.5 to 0.7 liters of packed red blood cells in citrate, phosphate, dextrose, and adenine (CPDA) solution (Photo courtesy of Fresenius HemoCare).

Transfusion Protocols Compared After Cardiac Surgery

Unnecessary blood transfusions may increase healthcare costs both directly, because blood is an increasingly scarce and expensive resource, and indirectly due to the complications associated with transfusion.... Read more

Industry News

view channel

Latin America’s IVD Sector Exceeds USD 2 Billion, Brazil leads

The Latin American in vitro diagnostics (IVD) sector was estimated at USD 2.4 billion in 2014. Population growth, government insurance, newly insured patients, and updated healthcare facilities have driven growth in the region and will continue to propel demand, according to Kalorama Information (New York, NY, USA).... Read more
 

Events

06 Apr 2015 - 08 Apr 2015
07 Apr 2015 - 09 Apr 2015
13 Apr 2015 - 16 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.