Features | Partner Sites | Information | LinkXpress
Sign In
RANDOX LABORATORIES
FOCUS DIAGNOSTICS, INC.
AB Sciex

Fiber-Optic Microscope Helps Detect Cancer

By Labmedica International staff writers
Posted on 01 May 2014
Images: High-resolution fiber-optic endoscopic microscope reveals some of the same tissue features as conventional histology on a biopsied sample. Healthy oral mucosa: (a) endoscopic microscope; (b) conventional histology. Oral cancer: (c) endoscopic microscope; (d) conventional histology (Photo courtesy of the US National Institute of Health).
Images: High-resolution fiber-optic endoscopic microscope reveals some of the same tissue features as conventional histology on a biopsied sample. Healthy oral mucosa: (a) endoscopic microscope; (b) conventional histology. Oral cancer: (c) endoscopic microscope; (d) conventional histology (Photo courtesy of the US National Institute of Health).
An inexpensive, portable and reusable endoscopic microscope has been developed that will help clinicians detect and diagnose early-stage disease, primarily cancer.

An endoscopic microscope is a tool or technique that obtains histological images from inside the human body in real-time and some clinicians consider it as an optical biopsy.

An engineering scientist at the University of Arkansas (Fayetteville, AR, USA) has developed an inexpensive, endoscopic microscope capable of producing high-resolution, subcellular images of tissue in real time. The fiber-optic device, which is portable, reusable and easily packaged with conventional endoscopes, will help clinicians detect and diagnose early-stage disease, primarily cancer.

The system, developed also serves as an intraoperative monitoring device by providing a preview biopsy that is, helping clinicians target ideal locations on lesions prior to and during surgical biopsies and by capturing high-resolution images of tumor margins in real time. The latter will help surgeons know whether they have totally removed a tumor. The microscope is built from a single fiber optic bundle that includes thousands of flexible, small-caliber fibers. This bundle is roughly one millimeter in diameter and could be inserted into the biopsy channel of a standard endoscope.

The system requires a topical contrast agent to facilitate fluorescent imaging. It can produce images at sub-cellular resolution, which allows clinicians to see the early stages of cell deformations that could lead to precancerous conditions. The probe can be sterilized and reused. The entire system, which fits into a conventional-sized briefcase, costs approximately USD 2,500.

A prototype of the system has been tested at the M.D. Anderson Cancer Center (Houston, TX, USA). Studies there focused on various conditions leading to esophageal cancer. The work provided high-resolution images of cell structure and morphology, specifically nuclear-to-cytoplasmic ratio, a critical indicator of cell behavior leading up to a precancerous condition. Results obtained from the endoscopic microscope were confirmed by standard histopathological examination of biopsied tissue.

Timothy Muldoon, MD, PhD, an assistant professor of biomedical engineering who developed the endoscopic microscope, said, “My dream is to disseminate this technology to a broad scope of medical facilities, hospitals and various clinics, of course, but also to take it into underserved and rural, even remote, areas. Its compactness and portability will allow us to do this.”

Related Links:

University of Arkansas
M.D. Anderson Cancer Center 



VIRCELL
ADVANCED INSTRUMENTS
DiagCor Bioscience
comments powered by Disqus
Life Technologies

Channels

Genetic Tests

view channel
Image: The characteristic Malar rash or butterfly rash seen in a patient with systemic lupus erythematosus (Photo courtesy of the National Institute of Arthritis and Musculoskeletal and Skin Diseases).

Genetic Key to Lupus Shows Potential of Personalized Medicine

DNA sequencing of a systemic lupus erythematosus (SLE) patient has identified a specific genetic mutation that is causing the disease, opening the way for personalized treatments. The development shows... Read more

Immunology

view channel
Image: The fluorescence-activated cell sorting FACSCanto II flow cytometer (Photo courtesy of BD Biosystems).

Flow Cytometry Detects Lymphoproliferative Disorders in Fluid Specimens

Immunophenotypic analysis of hematopoietic cell populations by flow cytometry has emerged as a useful ancillary study in the diagnostic evaluation of serous effusions and cerebrospinal fluids (CSFs).... Read more

Industry News

view channel

Most IVD Sector Companies Look Outside the EU and USA for Growth

Kalorama Information (New York City, NY, USA) has now published the 9th edition of its biennial market research report “Worldwide Market for In Vitro Diagnostics,” revealing estimates from its survey of the in vitro diagnostics (IVD) industry – presenting the trends, technologies, customer needs, and major suppliers with... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.