Features | Partner Sites | Information | LinkXpress
Sign In
FOCUS DIAGNOSTICS, INC.
RANDOX LABORATORIES
Biostrata Ltd on behalf of Thermo

Portable Smartphone Microscope Combination Created

By Labmedica International staff writers
Posted on 03 Oct 2013
Image: Screen of the Nokia cell phone showing the fluorescence image of 1 μm diameter green fluorescent beads (Photo courtesy of University of California, Los Angeles).
Image: Screen of the Nokia cell phone showing the fluorescence image of 1 μm diameter green fluorescent beads (Photo courtesy of University of California, Los Angeles).
A novel smartphone microscope adjunct has been created that can detect very small objects including particles that measure approximately 150 nm to 300 nm.

The portable smartphone attachment can be used to detect viruses and bacteria, eliminating the need for expensive or bulky microscopes and laboratory equipment and only weighs 186 grams.

Bioengineers at the University of California (Los Angeles, CA, USA) attached the device directly to the camera of a smartphone, and described it as a "fluorescent microscope." It was created using a three-dimensional (3D) printer and contains a color filter, an external lens, and a laser diode. The attachment works by illuminating fluid or solid samples at an angle of approximately 75 degrees using the diode. By illuminating the samples at this angle, the scientists say it avoids detecting scattered light that could interfere with the fluorescent image.

This field-portable fluorescent imager on the cell phone involves a compact laser-diode-based excitation at 450 nm that illuminates the sample plane at a high incidence angle, a long-pass (LP) thin-film interference filter, an external low numerical aperture (NA lens), and a coarse mechanical translation stage for focusing and depth adjustment. The 3D optomechanical attachment to the PureView 808 cell phone (Nokia; Espoo, Finland) was designed using Inventor software (Autodesk; San Rafael, CA, USA) and built by a 3D printer (Dimension Elite; Edina, MN, USA).

The device was able to detect single human Cytomegalovirus (HCMV) particles, a virus that can cause birth defects including deafness and brain damage. A single HCMV particle measures approximately 150 nm to 300 nm and the device detected the particles clearly. The device was able to detect nanoparticles, which were marked fluorescent polystyrene beads created especially for the test that measured between 90 nm to100 nm.

The authors concluded that given its high sensitivity and field-portability, the cell-phone-based fluorescence-imaging platform could be useful for specific imaging of various fluorescently labeled specimens such as bacteria and viruses in field settings. Therefore, it holds significant promise for various point-of-care applications such as viral load measurements or other biomedical tests conducted in remote or resource-limited environments. The study was published on September 9, 2013, in the journal ACS Nano.

Related Links:

University of California
Nokia
Autodesk



77 ELEKTRONIKA
CELLAVISION AB
KARL HECHT GMBH & CO KG

Channels

Genetic Tests

view channel
Image: Histopathology of a coronary artery with the most common form of obstructive coronary artery disease (atherosclerosis) and marked luminal narrowing (Photo courtesy of Nephron).

Blood Test Influences Clinical Decisions in Coronary Artery Disease

Clinicians need better approaches to evaluating women at midlife and beyond who present to primary care with chest pain and related symptoms such as an individual's current likelihood of having obstructive... Read more

Microbiology

view channel
Image: The VIKIA Malaria Ag Pf/Pan rapid diagnostic test (Photo courtesy of IMACCESS).

Malaria Rapid Diagnostic Test Evaluated At Point-Of-Care

For over a decade, the development of malaria rapid diagnostic tests (RDTs) has enabled reliable biological diagnostic testing in all situations where previously only clinical diagnosis was available.... Read more

Industry News

view channel

Clinical Lab Automation Sector at USD 5.4 Billion and Growing

Lab automation systems sold to clinical laboratories reached USD 5.4 billion in sales in 2014. Shortage of personnel will further drive these purchases, as will a need for new systems, according to a new market research report on the status of lab automation in both clinical and drug-discovery lab segments.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.