Features | Partner Sites | Information | LinkXpress
Sign In
FOCUS DIAGNOSTICS, INC.
GLOBETECH PUBLISHING LLC
RANDOX LABORATORIES

Digital PCR Chosen to Develop Leukemia Test

By Labmedica International staff writers
Posted on 04 Feb 2013
A general method called “limiting dilution polymerase chain reaction (PCR)” was developed for quantifying PCR targets. This method was subsequently used for the quantification of marker mutations in acute leukemia.

By diluting DNA samples so that only one or two copies per well were present and then amplifying those copies with PCR, scientists were able to detect two copies of leukemic DNA against a background of 160,000 normal genomes.

The team then reported that the outcome of acute leukemia can be predicted by measuring the response to treatment using limiting dilution PCR to quantify the leukemic cells at high sensitivity. Prof. Alec Morley and his lab at Flinders University and Medical Center in Adelaide (SA, Australia) then used real-time quantitative PCR (qPCR) to develop a highly sensitive method for isolating and quantifying the chromosomal translocation that is typically associated with chronic myelogenous (or myeloid) leukemia (CML), also known as chronic granulocytic leukemia (CGL), a cancer of the white blood cells. It is a form of leukemia characterized by the increased and unregulated growth of predominantly myeloid cells in the bone marrow and the accumulation of these cells in the blood.

Because the translocation point for each patient is different in CML, real-time PCR conditions may vary from patient to patient and may therefore produce different results. Therefore, real-time PCR conditions may vary from patient to patient and may therefore produce different results. The lab has now returned to digital PCR.

Monoquant, a company associated with Flinders University, used Bio-Rad’s (Hercules, CA, USA) QX100 system to refine the new clinical test for CML. Not only does the instrument offer high sensitivity but also removes variability in amplification efficiency that results from using patient-specific PCR primers, a traditional sticking point for the US Food and Drug Administration (FDA; Silver Spring, MD, USA). Monoquant hopes the results from the QX100 system will fast-track the FDA approval process for its test.

Related Links:
Flinders University and Medical Center in Adelaide, South Australia
Monoquant
Bio-Rad




77 ELEKTRONIKA
KARL HECHT GMBH & CO KG
DIASYS DIAGNOSTIC SYSTEMS

Channels

Genetic Tests

view channel
Image: The final result of a DNA sequencing process, with each color representing one of the four base chemicals, adenine, guanine, cytosine and thymine, that comprise DNA (Photo courtesy of Gerald Barber).

Gene Sequencing Reference Standard Increases Accuracy for Medical Laboratories

To reduce the variability in genetic test results that has been observed across different clinical laboratories and pathology groups, a new standard DNA reference has been introduced, which will improve... Read more

Hematology

view channel
Image: Immunochemistry of bone marrow biopsy from an acute myeloid leukemia patient showing sheets of CD34 positive cells; corresponding bone marrow aspirate showed only 20% blasts (Photo courtesy of All India Institute of Medical Sciences).

Immunohistochemistry Assesses Early Response in Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a heterogeneous disease with respect to prognosis and early response assessment has an established role as predictor of remission rate, and overall and disease-free survival.... Read more

Industry News

view channel

Partners to Develop and Commercialize Noninvasive Tests for Bladder Cancer

An agreement between a major European university medical center and a multinational biotechnology company was designed to promote commercialization and further development of a liquid biopsy test for the diagnosis of bladder cancer. The liquid biopsy test is based on bladder cancer DNA methylation biomarkers developed... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.