We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

BIO-RAD LABORATORIES

Provides full range of instrumentation, reagent kits, software and quality control systems to clinical laboratories. ... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Nanotechnology Helps Detects Biomarkers of Cancer

By LabMedica International staff writers
Posted on 22 Feb 2016
Print article
The Gel Doc XR+ System
The Gel Doc XR+ System (Photo courtesy of BIO-RAD LABORATORIES)
The detection and quantification of short nucleic acid sequences has many potential applications in studying biological processes, monitoring disease initiation and progression, and evaluating environmental systems.

Nucleic acids consist of chains or sequences of bases stretching from just a few to millions of elements long. The exact order in which these bases are found, even over short distances, is strongly tied to their functions, and therefore can be used as direct indicators of what is going on inside cells and tissue.

Biomedical engineers at the Wake Forest University School of Medicine (Winston-Salem, NC, USA) and their colleagues used nanotechnology to determine whether a specific target nucleic acid sequence exists within a mixture, and to quantify it if it does through a simple electronic signature. The team first demonstrated that the technology could effectively identify a specific sequence among a background of competing nucleic acids, and then applied their technique to one particular microRNA (mi-R155) known to indicate lung cancer in humans. They showed that the approach could resolve the minute amount of microRNAs that can be found in patient.

Complementary oligonucleotides were hybridized by incubating the samples at a 1:1 molar ratio in pure deionized water at 95 °C for 10 minutes and gradually cooling to room temperature to generate duplex material (dsBio34 or 23 bp heteroduplex) at a final concentration of 8 μM, as confirmed by spectrophotometry. Hybridization was confirmed by gel electrophoresis and Gel images were captured using a Gel Doc system (Bio-Rad Laboratories; Hercules, CA. USA). Silicon chips (4.4 mm) containing 25 nm thick, free-standing silicon nitride membranes were obtained commercially (Norcada, Inc.; Edmonton, AB, Canada) . In each membrane, an individual nanopore (diameter 7.5−9.0 nm) was fabricated using an Orion Plus scanning helium ion microscope (Carl Zeiss; Jena, Germany).

The scientist’s assay based on the solid-state nanopore platform identified specific sequences in solution. They demonstrated that hybridization of a target nucleic acid with a synthetic probe molecule enables discrimination between duplex and single-stranded molecules with high efficacy. The approach required limited preparation of samples and yielded an unambiguous translocation event rate enhancement that can be used to determine the presence and abundance of a single sequence within a background of nontarget oligonucleotides.

Adam R. Hall, PhD, assistant professor of biomedical engineering lead author of the study, said, “We envision this as a potential first-line, noninvasive diagnostic to detect anything from cancer to the Ebola virus. Although we are certainly at the early stages of the technology, eventually we could perform the test using a few drops of blood from a simple finger prick. If the sequence you are looking for is there, it forms a double helix with a probe we provide and you see a clear signal. If the sequence isn't there, then there isn't any signal. By simply counting the number of signals, you can determine how much of the target is around.” The study was published on January 29, 2016, in the journal Nano Letters.

Related Links:

Wake Forest University School of Medicine 
Bio-Rad Laboratories  
Carl Zeiss 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The medical office procedure detects the key biomarker in Parkinson’s and related neurodegenerative diseases (Photo courtesy of BIDMC)

Simple Skin Biopsy Test Detects Parkinson’s and Related Neurodegenerative Diseases

Parkinson's disease and a group of related neurodegenerative disorders known as synucleinopathies impact millions globally. These conditions, including Parkinson’s disease (PD), dementia with Lewy bodies... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.