We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Super-Resolution Microscopy Improves Platelet Granule Disorder Diagnosis

By LabMedica International staff writers
Posted on 15 Feb 2016
Print article
Image: Platelet granules in a blood sample stained for the marker protein CD63 visualized by Structured Illumination Microscopy (Photo courtesy of the University College London).
Image: Platelet granules in a blood sample stained for the marker protein CD63 visualized by Structured Illumination Microscopy (Photo courtesy of the University College London).
Platelets or thrombocytes form part of the blood, help heal wounds, and prevent bleeding by forming blood clots and they do this through tiny granules that release molecules for blood clotting.

Platelet disorders occur when these granules are too few in number, are misshapen, or do not release the right molecules; and as causes for platelet disorders vary considerably, specific treatment can be improved if diagnostic tests can distinguish the different types.

A team of scientists led by those at the University College London (UK) took blood samples were taken from three patients with Hermansky Pudlak Syndrome and seven controls. The three patients each had a defect in the Hermansky-Pudlak Syndrome 1 (HPS1) gene, HPS6 and HPS5 respectively and all the controls were healthy volunteers. Platelet-rich plasma was isolated from blood and the platelets were fixed, stained for CD63, and processed for analysis by immunofluorescence microscopy, using a Structured Illumination Microscope (SIM).

The imaging technology was custom-built by the team to automatically count the number of granules per platelet, identifying those with Hermansky-Pudlak Syndrome, a rare blood disorder thought to affect 1 in 500,000. The team distinguished the three patients with Hermansky-Pudlak Syndrome from the seven normal controls with 99% confidence. Automated counting of granules showed that those with the disorder had only one third as many granules as controls.

The authors concluded that a super-resolution imaging approach is effective and rapid in objectively differentiating between patients with a platelet bleeding disorder and healthy volunteers. CD63 is a useful marker for predicting Hermansky-Pudlak Syndrome and could be used in the diagnosis of patients suspected of other platelet granule disorders.

David Westmoreland, a doctoral student and first author of the study said, “We've found that SIM has a lot of advantages over whole mount electron microscopy as a diagnostic method. Samples don't need to be analyzed live and can be reanalyzed, and automation means analysis is unbiased and less time-consuming. Given [that] about 75% of patients with a bleeding disorder such as Hermansky-Pudlak Syndrome are initially misdiagnosed and 28% need to see between four to six specialists before receiving the correct diagnosis, there is a demand for a new method of analysis.” The study was published online on January 25, 2016, in the Journal of Thrombosis and Haemostasis.

Related Links:

University College London


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.