We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Fluidigm

Fluidigm Corporation focuses on the most pressing needs in translational and clinical research, including cancer, imm... read more Featured Products: More products

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

DNA Levels in Blood Correlated with Ovarian Cancer Outcomes

By LabMedica International staff writers
Posted on 04 Jan 2017
Print article
Image: The Biomark microfluidic system for polymerase chain reactions (Photo courtesy of Fluidigm).
Image: The Biomark microfluidic system for polymerase chain reactions (Photo courtesy of Fluidigm).
The development of blood biomarkers that can be used for early detection of cancer or to measure tumor burden and response to treatment is a major goal of translational cancer studies across all cancer types.

Both tumor-derived proteins and DNA can be detected in circulating plasma and serum from cancer patients. Levels of circulating tumor DNA (ctDNA) detected in a blood test can be correlated with the size of ovarian cancers and can predict a patient's response to treatment or time to disease progression.

Scientists at the Cancer Research UK Cambridge Institute (Cambridge, UK) measured levels of ctDNA carrying mutations in the tumor protein 53 gene (TP53), which are detected in 99% of patients with high-grade serous ovarian cancer (HGSOC). They analyzed 318 blood samples from 40 HGSOC patients, taken before, during, and after standard-of-care treatment were analyzed. Computerized tomography (CT) images of the patients' tumors were collected, as well as data on the progression of their cancers.

In order to quantify ctDNA levels, patient-specific TP53 TaqMan assays were designed to target mutations identified in formalin-fixed paraffin-embedded (FFPE) tissue. Digital PCR using the Biomark microfluidic system (Fluidigm, South San Francisco, CA, USA) was used to measure ctDNA levels in cell-free DNA from plasma samples collected during courses of chemotherapy. Serum CA-125 level was routinely monitored using a two-site sandwich immunoassay on a Siemens Centaur XP auto-analyzer.

The team found the fraction of mutated TP53 in ctDNA (TP53MAF) was correlated with volume of disease as measured by CT scan and unlike CA-125 pre-treatment TP53MAF levels were also correlated with each patient's time to progression. While CA-125 took 84 days to reflect the full extent of changes after chemotherapy, changes were reflected in TP53MAF in a median of just 37 days. In patients being treated for a relapse, a decrease in TP53MAF of more than 60% was associated with a longer time to progression, while a decrease of 60% or less was associated with poor response to chemotherapy and a time to progression of less than six months.

The authors concluded that their findings have strong potential for clinical utility owing to the ease of assaying DNA in plasma and the low cost and speed of ctDNA testing. Having very early information on response would empower patients and physicians to test alternative treatment options and have high utility in trials that link biomarkers to targeted therapy. The study was published on December 20, 2016, in the journal Public Library of Science Medicine.

Related Links:
Cancer Research UK Cambridge
Fluidigm

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The cobas Malaria test is the first FDA-approved molecular test to screen U.S. blood donors for malaria (Photo courtesy of Roche)

First FDA-Approved Molecular Test to Screen Blood Donors for Malaria Could Improve Patient Safety

Malaria, a serious illness that often leads to death, is spread by a specific mosquito species that infect humans with a parasite. Other transmission modes include blood transfusions, organ transplants,... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.