Features | Partner Sites | Information | LinkXpress
Sign In
RANDOX LABORATORIES
FOCUS DIAGNOSTICS, INC.
AB Sciex

Autoantibody Targets Identified in Lupus Patients

By Labmedica International staff writers
Posted on 09 Dec 2013
Image: Blood smear showing an “LE cell” from a patient with systemic lupus erythematosus (Photo courtesy of Imperial College London).
Image: Blood smear showing an “LE cell” from a patient with systemic lupus erythematosus (Photo courtesy of Imperial College London).
Patients with the autoimmune disease systemic lupus erythematosus (SLE) produce autoantibodies that can cause damage to multiple organ systems.

A microarray has been developed to identify cytokines, chemokines, and other circulating proteins as potential targets of the autoantibodies produced by SLE patients, and are implicated in inflammatory autoimmune disease and diseases of immune deficiency.

Scientists at Stanford University (CA, USA) and their colleagues from other institutes designed a nitrocellulose-surface microarray containing human cytokines, chemokines, and other circulating proteins and demonstrated that the array permitted specific detection of serum factor-binding probes. They used antibody binding assays and an indirect B cell-activating factor (BAFF) enzyme-linked immunoassay to detect autoantibodies.

Serum profiling from individuals with SLE revealed that among several targets, elevated immunoglobulin G (IgG) autoantibody reactivity to BAFF was associated with SLE compared with control samples. BAFF reactivity correlated with the severity of disease-associated features, including interferon (IFN)-α–driven SLE pathology. Of the other novel targets of autoantibodies they identified, the observed reactivity to the growth factors epidermal growth factor, (EGF), and somatotropin (HGH) were of particular interest.

Further screening of samples derived from individuals with SLE and other inflammatory autoimmune diseases revealed striking array reactivity to these and other growth factor targets, including various isoforms of fibroblast growth factor (FGF). The idea of an inverse relationship between inflammation- and growth factor-mediated pathways is an area of increasing interest in the field of inflammation.

The authors concluded that the implication of growth factor-targeted autoantibodies in the potential trade-off between tissue growth/repair and inflammation is one intriguing avenue to pursue. That serum factor-protein microarrays facilitated the detection of autoantibody reactivity to serum factors in human samples and that BAFF-reactive autoantibodies may be associated with an elevated inflammatory disease state within the spectrum of SLE. The study was published on November 25, 2013, in the Journal of Clinical Investigation.

Related Links:

Stanford University



DiagCor Bioscience
77 ELEKTRONIKA
DRG International
comments powered by Disqus
Life Technologies

Channels

Clinical Chemistry

view channel
Image: The API 5000 triple quadruple mass spectrometer (Photo courtesy of AB SCIEX).

Serum Prostate-Specific Antigen Measured by Tandem Mass Spectrometry

Prostate-specific antigen (PSA) is a widely used blood test for detection and monitoring of prostate disease and many clinicians assume that all test methods produce essentially the same results, though... Read more

Industry News

view channel

GlaxoSmithKline Boosts Global Cancer Testing With GE Healthcare Deal

The new agreement between GE Healthcare-subsidiary Clarient (Aliso Viejo, CA, USA) and GlaxoSmithKline (GSK; Brentford, UK) will create a force in cancer testing, according to Kalorama Information (New York City, NY, USA). The two entities will form a multipurpose, data analytics- and companion diagnostics (CDx)-driven... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.