Features | Partner Sites | Information | LinkXpress
Sign In
Bio-Rad Diabetes Division
RANDOX LABORATORIES
PURITAN MEDICAL

Image Cytometry Measures Mononuclear Cell Concentration

By Labmedica International staff writers
Posted on 12 Feb 2013
A rapid fluorescence-based image cytometry system has been utilized for brightfield and fluorescence imaging analysis of cellular characteristics.

The viability and concentration of isolated peripheral blood mononuclear cells (PBMCs) are traditionally measured by manual counting with trypan blue (TB) using a hemacytometer, but red blood cell (RBC) contamination can be an issue.

Scientists at the Nexcelom Bioscience Laboratories, (Lawrence, MA, USA) compared their Cellometer Vision instrument with both manual counting and automatic method for accurately measuring the concentration of PBMCs in prepared blood samples. Fifteen freshly isolated samples were stained with acridine orange and propidium iodide (AO/PI) to identify RBC contamination. The five different methods were manual counting of TB-stained PBMCs in hemacytometer; manual counting of PBMCs in brightfield images; manual counting of acetic acid lysing of RBCs with TB-stained PBMCs; automated counting of acetic acid lysing of RBCs with PI-stained PBMCs; and AO/PI dual staining method.

Each of the 15 samples measured was categorized into low, medium, or high RBC contamination. Five samples showed less than 10% of RBC contamination, six samples showed 10% to 40% of RBC contamination, and four samples showed RBC contamination greater than 40%. The total particles counted in brightfield increased due to the addition of RBCs, while AO/PI staining showed consistent measurement of PBMCs, which again demonstrated the robustness of the method despite RBC contamination. Although inherent RBC contaminants may have existed in the sample, the purpose was to observe the increasing difference between fluorescently stained nucleated cells and total brightfield cell count including RBCs.

The authors concluded that fluorescence-based image cytometry can be utilized to eliminate the RBC-induced error in patient samples, which can improve accuracy and efficiency of PBMC measurement. Cellometer image cytometry has also demonstrated fluorescence-based cell population analysis such as apoptosis detection, cell cycle, as well as surface marker labeling. The system can be used to perform immunophenotyping of collected PBMCs, and can quickly characterize incoming patient samples, further simplifying PBMC characterization protocol. The study was published in the February 2013 issue of the Journal of Immunological Methods.

Related Links:
Nexcelom Bioscience


KARL HECHT GMBH & CO KG
77 ELEKTRONIKA
DIASYS DIAGNOSTIC SYSTEMS
WATERS CORPORATION

Channels

Hematology

view channel

Magnetic Resonance Improves Approach to Measuring Hemostasis Parameters

Two studies evaluating a magnetic resonance based detector for hemostasis measurements found its multiplex results to be rapid and accurate using lower blood volumes. At the International Society on Thrombosis and Hemostasis (ISTH) 2015 Congress (Toronto, Canada), T2 Biosystems, Inc. (Lexington, MA, USA) presented results... Read more

Lab Tech.

view channel
Image: Verigene System instrumentation consists of a Verigene Reader and one or multiple Verigene Processor SPs (Photo courtesy of Nanosphere).

Directed Molecular Diagnostic Tests Highlight Recent Microbiology Conference

The performance of a series of directed molecular diagnostic tests was confirmed by several studies presented at a recent microbiology conference. Nanosphere (Northbrook, IL, USA) manufactures tests... Read more

Industry News

view channel

QIAGEN Expands Diagnostics Menu in Partnership with Seegene

In a new collaboration, Seegene Inc. (Soul, Republic of Korea) will use its proprietary next-generation qPCR technology in developing new multiplex assays for the flagship platform of Qiagen NV (Venlo, Netherlands and Hilden, Germany). Seegene will develop a menu of multiplex assay panels for the modular QIAsymphony... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.