Features | Partner Sites | Information | LinkXpress
Sign In
AB Sciex
SEEGENE
FOCUS DIAGNOSTICS, INC.

Image Cytometry Measures Mononuclear Cell Concentration

By Labmedica International staff writers
Posted on 12 Feb 2013
A rapid fluorescence-based image cytometry system has been utilized for brightfield and fluorescence imaging analysis of cellular characteristics.

The viability and concentration of isolated peripheral blood mononuclear cells (PBMCs) are traditionally measured by manual counting with trypan blue (TB) using a hemacytometer, but red blood cell (RBC) contamination can be an issue.

Scientists at the Nexcelom Bioscience Laboratories, (Lawrence, MA, USA) compared their Cellometer Vision instrument with both manual counting and automatic method for accurately measuring the concentration of PBMCs in prepared blood samples. Fifteen freshly isolated samples were stained with acridine orange and propidium iodide (AO/PI) to identify RBC contamination. The five different methods were manual counting of TB-stained PBMCs in hemacytometer; manual counting of PBMCs in brightfield images; manual counting of acetic acid lysing of RBCs with TB-stained PBMCs; automated counting of acetic acid lysing of RBCs with PI-stained PBMCs; and AO/PI dual staining method.

Each of the 15 samples measured was categorized into low, medium, or high RBC contamination. Five samples showed less than 10% of RBC contamination, six samples showed 10% to 40% of RBC contamination, and four samples showed RBC contamination greater than 40%. The total particles counted in brightfield increased due to the addition of RBCs, while AO/PI staining showed consistent measurement of PBMCs, which again demonstrated the robustness of the method despite RBC contamination. Although inherent RBC contaminants may have existed in the sample, the purpose was to observe the increasing difference between fluorescently stained nucleated cells and total brightfield cell count including RBCs.

The authors concluded that fluorescence-based image cytometry can be utilized to eliminate the RBC-induced error in patient samples, which can improve accuracy and efficiency of PBMC measurement. Cellometer image cytometry has also demonstrated fluorescence-based cell population analysis such as apoptosis detection, cell cycle, as well as surface marker labeling. The system can be used to perform immunophenotyping of collected PBMCs, and can quickly characterize incoming patient samples, further simplifying PBMC characterization protocol. The study was published in the February 2013 issue of the Journal of Immunological Methods.

Related Links:
Nexcelom Bioscience


GREINER-BIO-ONE
PURITAN MEDICAL
ADVANCED INSTRUMENTS
BioConferenceLive

Channels

Genetic Tests

view channel
Image: The QuantiTect Reverse Transcription Kit (Photo courtesy of Qiagen)

Blood Tests Predict Risk of Sudden Cardiac Death

A simple blood test can predict a person's risk for sudden cardiac death, enabling physicians to quickly and accurately assess a patient's need for an implantable cardiac defibrillator (ICD).... Read more

Hematology

view channel

Blood Donations Screened for Viruses Using Multiplex Assay

A global healthcare company was chosen to partner the Japanese Red Cross (JRC; Tokyo, Japan) for nucleic acid screening of the nation's blood supply. Under the terms of the 7-year agreement, the healthcare company, Grifols (Barcelona, Spain) will provide the JRC with its newest automation platform, the Procleix Panther... Read more

Pathology

view channel

Gene Profile Predicts Risk of Bladder Cancer Recurrence

A genomic study has pinpointed several markers that identify bladder cancer patients at risk of recurrence and that may be indicators of overall survival status. Nearly half of patients with bladder cancer experience recurrences, so reliable predictors of this recurrent phenotype are needed to guide surveillance and treatment.... Read more

Industry News

view channel

Beckman Coulter and hc1.com Enter Strategic Partnership for Innovative Healthcare Cloud System

The diagnostics division of Beckman Coulter (Brea, CA, USA) and hc1.com (Indianapolis, IN, USA) have announced a partnership to bring an innovative healthcare cloud-technology system to clinical laboratories. The system, hc1.com's "Healthcare Relationship Cloud," helps turn large amounts of clinical data into actionable... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.