Features | Partner Sites | Information | LinkXpress
Sign In
Biostrata Ltd on behalf of Thermo
PURITAN MEDICAL
RANDOX LABORATORIES

Blood Test Diagnoses Cause of Kidney Failure

By Labmedica International staff writers
Posted on 01 Feb 2012
Discoveries about the basic workings of endothelial cells could lead to a diagnostic test for the serious kidney disease known as hemolytic uremic syndrome (HUS).

HUS is a potentially life-threatening condition and often occurs after gastrointestinal infection with Escherichia coli O157:H7, which produces Shiga toxins (Stx) that cause hemolytic anemia, thrombocytopenia, and renal injury.

Scientists at University of Toronto (ON, Canada) discovered a biological pathway never before known to have played a role in the development of HUS. Specifically, they found that the toxin can increase the level of a chemokine, namely stromal cell-derived factor-1 (SDF-1), and its receptor, C-X-C chemokine receptor type 4 (CXCR4). Chemokines are small secreted proteins that stimulate cells to move or migrate. CXCR4 was already known to stimulate the release and migration of the precursors of white blood cells from bone marrow, to change how blood vessels grow and to help the AIDS virus enter cells.

Blood tests were performed on children with E. coli and all measurements of SDF-1 were performed on blinded samples by a sandwich enzyme-linked immunosorbent assay (ELISA) (R&D Systems, Minneapolis, MN, USA). The results indicated that those who went on to develop HUS had as much as four times higher levels of the protein SDF-1, than other children with E. coli who did not go on to develop HUS. This suggests that a blood test could be used to predict who is most likely to develop the potentially fatal HUS, meaning they could be monitored more closely. The scientists found that too much communication between SDF-1 and CXCR4 molecules can also impact the development of HUS in animals and humans.

Philip A. Marsden, MD, FRCPC, who is a nephrologist at Saint Michael’s Hospital (Toronto, ON, Canada) and senior author of the study, said, "A safe water supply and clean food supply chain is the most important step in preventing HUS caused by E. coli. If we can measure SDF-1 levels in real time during an E. coli outbreak and confirm these findings, then we have a strong case for a trial of CXCR4 antagonists in patients with toxin-producing E. coli to see if it prevents or improves cases of HUS.” The study was published on January 9, 2012, in the Journal of Clinical Investigation.

Related Links:
University of Toronto
R&D Systems
Saint Michael’s Hospital


77 ELEKTRONIKA
CELLAVISION AB
KARL HECHT GMBH & CO KG

Channels

Genetic Tests

view channel
Image: Histopathology of tuberculoid leprosy in a skin section (Photo courtesy Dr. D.S. Ridley, Wellcome Images).

Genes Discovered Influence Risk of Developing Leprosy

Leprosy, a chronic dermatological and neurological disease, is caused by infection with Mycobacterium leprae, and its manifestation, progression and prognosis are strongly associated with the proficiency... Read more

Hematology

view channel
Image: Phlebotomy or venipuncture performed to obtain blood for laboratory tests (Photo courtesy of Sweet Water Health and Education).

Excessive Phlebotomy in Cardiac Surgical Care Leads to Anemia

Laboratory testing among patients undergoing cardiac surgery can lead to excessive bloodletting, which can increase the risk of developing hospital-acquired anemia and the need for blood transfusion.... Read more

Industry News

view channel

Latin America’s IVD Sector Exceeds USD 2 Billion, Brazil leads

The Latin American in vitro diagnostics (IVD) sector was estimated at USD 2.4 billion in 2014. Population growth, government insurance, newly insured patients, and updated healthcare facilities have driven growth in the region and will continue to propel demand, according to Kalorama Information (New York, NY, USA).... Read more
 

Events

06 Apr 2015 - 08 Apr 2015
07 Apr 2015 - 09 Apr 2015
13 Apr 2015 - 16 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.