We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Blood Transfusions in Malaria Zones Made Safer

By LabMedica International staff writers
Posted on 03 May 2016
Print article
Image: The Mirasol pathogen reduction technology for blood transfusions (Photo courtesy of Terumo BCT).
Image: The Mirasol pathogen reduction technology for blood transfusions (Photo courtesy of Terumo BCT).
Patients, especially children, who undergo blood transfusions in sub-Saharan Africa, are at high risk of transfusion-transmitted malaria. Every year, approximately 214 million people worldwide are infected with acute malaria, the majority of whom are in Africa and the disease is caused by the parasite Plasmodium.

A new trial suggests that treating donated blood with a new technology that combines ultra-violet (UV) radiation and vitamin B is safe and could minimize the risk of malaria infection following blood transfusions. Commonly used procedures for whole blood include nucleic acid testing, blood filtration or bacterial culture, but these are not done in most developing countries because of a lack of resources.

Scientists at the University of Cambridge (UK) and their colleagues carried out a randomized, double-blind, parallel-group clinical trial of eligible adult patients, aged 18 years or more, with blood group O+, who required up to two whole blood unit transfusions within three days of randomization and were anticipated to remain in hospital for at least three consecutive days after initial transfusion. There were 223 adult patients who needed a blood transfusion because of severe anemia or hemorrhage took part in the study.

The team analyzed blood samples for all of the transfusion recipients on the day of the transfusion and 1, 3, 7 and 28 days later. By studying the sequences of Plasmodium genes present in the blood, they were able to tell whether the patients were likely to be carrying the donor parasite after the transfusion. A total of 65 patients were not previously carrying the parasite, half received parasite treated blood, and the other half received parasite untreated blood. There were 8/37 patients (22%) who received untreated blood later tested positive for malaria parasite, compared 1/28 (4%) of patients who received treated blood.

Treatment of whole blood was with the Mirasol Pathogen Reduction Technology (Terumo BCT, Lakewood, CO, USA). Coagulation parameters, platelet counts and hemostatic status of the patients was similar whether patients received treated or untreated blood. The technology did not appear to affect the coagulation properties of the blood, and patients who received the treated blood had slightly fewer allergic reactions to those who received the untreated blood (5% versus 8%).

Jean-Pierre Allain, MD, a professor and lead author of the study said, “Testing for parasites such as malaria is expensive and until now, there have been no technologies capable of treating whole blood, which is most commonly used in transfusions in sub-Saharan Africa. This is the first study to look at the potential of pathogen-reduction technology in a real-world treatment setting and finds that although the risk of malaria transmission is not completely eliminated, the risk is severely reduced.” The study was published on the April 21, 2016, in the journal the Lancet.

Related Links:
University of Cambridge
Terumo BCT

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.