We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Genomic Assay Predicts Biochemical Failure and Risk of Metastasis in Prostate Cancer Patients After Surgery and Radiation Therapy

By LabMedica International staff writers
Posted on 13 Aug 2014
Print article
An advanced genomic test has been used to predict the course of prostate cancer in patients following surgery and radiation treatment.

Investigators at Thomas Jefferson University (Philadelphia, PA, USA) used the commercially available GenomeDx Biosciences (San Diego, CA, USA) Decipher assay system to analyze the genomes from tumor samples from 139 patients who had received radiation therapy following prostate surgery.

Decipher is a genomic test carried out on a small tissue sample that was removed during surgery, which measures the expression levels of 22 RNA biomarkers involved in multiple biological pathways across the genome associated with aggressive prostate cancer. The Decipher test uses the expression of these biomarkers to calculate the probability of clinical metastasis within five years of radical prostatectomy surgery and within three years of successive PSA rise (biochemical recurrence).

Results revealed that Decipher correctly predicted biochemical failure and risk of metastasis after prostate cancer postsurgical irradiation. It was suggested that patients with lower risk as defined by Decipher would benefit from delayed radiation treatment, as opposed to those with higher Decipher scores. However, this needs prospective validation in order to become generally accepted. Nonetheless, genomic-based models may be useful for improved decision-making for treatment of high-risk prostate cancer.

"We are moving away from treating everyone the same," said first author Dr. Robert Den, assistant professor of radiation oncology and cancer biology at Thomas Jefferson University. "Genomic tools are letting us gauge which cancers are more aggressive and should be treated earlier with radiation, and which ones are unlikely to benefit from additional therapy. Our analysis suggests that genomic analysis scores could be used, in concert with other diagnostic measures such as PSA testing, to help determine which patients would benefit from additional radiation therapy and more aggressive measures, and which are less likely to benefit."

The study was published in the July 8, 2014, online edition of the International Journal of Radiation Oncology*Biology*Physics.

Related Links:

Thomas Jefferson University
GenomeDx Biosciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.