We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Genomic Assay Predicts Biochemical Failure and Risk of Metastasis in Prostate Cancer Patients After Surgery and Radiation Therapy

By LabMedica International staff writers
Posted on 13 Aug 2014
Print article
An advanced genomic test has been used to predict the course of prostate cancer in patients following surgery and radiation treatment.

Investigators at Thomas Jefferson University (Philadelphia, PA, USA) used the commercially available GenomeDx Biosciences (San Diego, CA, USA) Decipher assay system to analyze the genomes from tumor samples from 139 patients who had received radiation therapy following prostate surgery.

Decipher is a genomic test carried out on a small tissue sample that was removed during surgery, which measures the expression levels of 22 RNA biomarkers involved in multiple biological pathways across the genome associated with aggressive prostate cancer. The Decipher test uses the expression of these biomarkers to calculate the probability of clinical metastasis within five years of radical prostatectomy surgery and within three years of successive PSA rise (biochemical recurrence).

Results revealed that Decipher correctly predicted biochemical failure and risk of metastasis after prostate cancer postsurgical irradiation. It was suggested that patients with lower risk as defined by Decipher would benefit from delayed radiation treatment, as opposed to those with higher Decipher scores. However, this needs prospective validation in order to become generally accepted. Nonetheless, genomic-based models may be useful for improved decision-making for treatment of high-risk prostate cancer.

"We are moving away from treating everyone the same," said first author Dr. Robert Den, assistant professor of radiation oncology and cancer biology at Thomas Jefferson University. "Genomic tools are letting us gauge which cancers are more aggressive and should be treated earlier with radiation, and which ones are unlikely to benefit from additional therapy. Our analysis suggests that genomic analysis scores could be used, in concert with other diagnostic measures such as PSA testing, to help determine which patients would benefit from additional radiation therapy and more aggressive measures, and which are less likely to benefit."

The study was published in the July 8, 2014, online edition of the International Journal of Radiation Oncology*Biology*Physics.

Related Links:

Thomas Jefferson University
GenomeDx Biosciences


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.