We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Innovative Methodology Translates Noncoding DNA in Colorectal Cancer

By LabMedica International staff writers
Posted on 05 Aug 2014
Print article
Invitrogen\'s Qubit 2.0 fluorometer
The Qubit 2.0 fluorometer (Photo courtesy of INVITROGEN LIFE TECHNOLOGIES)
Although the genetic origins of cancers have been studied for a long time, scientists were not able to measure the role of noncoding regions of the genome until now.

Cancer is a disease of the genome resulting from a combination of genetic modifications or mutations which are inherited from parents with strong or weak predispositions to develop certain kinds of cancer and in addition accumulate new mutations in cells throughout an individual’s lifespan.

Geneticists at the University of Geneva (Switzerland) used genome sequencing technology to compare the ribonucleic acid (RNA) between healthy tissue and tumor tissue from 103 patients. They searched for regulatory elements present in the vast, noncoding portion of the genome that impact the development of colorectal cancer. The goal was to identify the effect, present only in cancerous tissue, of acquired mutations whose activation would have triggered the disease and it is the first study of this scale to examine the noncoding genome of cancer patients. RNA quality was assessed using the Bioanalyzer RNA 6000 Nano Kit (Agilent Technologies; Santa Clara, CA, USA) and RNA quantity was measured with the Qubit 2.0 fluorometer using the RNA Broad range kit (Invitrogen; Carlsbad, CA, USA) and messenger RNA (mRNA) sequencing was done on a HiSeq 2000 platform (Illumina; San Diego, CA, USA).

The team was able to identify two kinds of noncoding mutations that have an impact on the development of colorectal cancer. They found, on one hand, hereditary regulatory variants that are not active in healthy tissue, but are activated in tumors and seem to contribute to cancer progression. It shows that the inherited genome not only affects the predisposition towards developing cancer, but also has an influence on its progression. On the other hand, the scientists identified effects of acquired mutations on the regulation of gene expression that affect the genesis and progression of colorectal tumors.

Halit Ongen, PhD, the lead author of this study, said, “The elements responsible for the development and progression of cancers located in the noncoding genome are as important as those found in the coding regions of the genome. Therefore, analyzing genetic factors in our whole genome, and not only in the coding regions as it was done before, gives us a much more comprehensive knowledge of the genetics behind colorectal cancer.” The study was published on July 23, 2014, in the journal Nature.

Related Links:

University of Geneva
Agilent Technologies
Invitrogen 


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get complete access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.